• Anúncio Global
    Respostas
    Exibições
    Última mensagem

raciocíno lógico matemático

MAT0349
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.

Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.

O intuito deste compartilhamento é favorecer um estudo complementar.

Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.

raciocíno lógico matemático

Mensagempor jaquecox » Ter Mai 31, 2011 19:55

olá... tenho feitos algumas provas do CESPE e percebí que cai muito questões assim e não sei raciocinar em cima delas:
a soma de 3 números inteiros positivos é igual ao maior número inteiro de 5 algrismos distintos. Se adicionarmos a cada um dos números o maior número inteiro de 3 algarismos, a nova soma será igual a :
a) 102996
b) 102960
c) 102876
d) 101726
e) 101762

E agora?????
jaquecox
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Ter Abr 26, 2011 21:34
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: raciocíno lógico matemático

Mensagempor carlosalesouza » Qua Jun 01, 2011 00:03

Veja o seguinte... primeiro, o maior número inteiro de 5 algarismos distintos é 98765, correto?

os três números são a,b,c\in\mathbb{Z}|a+b+c=98765, de acordo?

o maior número de 3 algarismos é 999 (o problema não fala em algarismos distintos... isso é meio que uma pegadinha), certo?

então, a resposta é:
\\
(a+999)+(b+999)+(c+999) = R\\
a+b+c +3\times 999 = R

Sendo a+b+c=98765, então:
\\
R=98765+3\times 999\\
R=98765+2997= 101762

O detalhe é que se fizermos com o maior número de 3 algarismos distintos (987), teremos como resposta 101726, que aparece como opção e, ainda, se fizermos com 99999 para 5 algarismos, teremos 102996... que também está entre as alternativas...

É preciso muito cuidado ao ler esses enunciados... rs

Ok?

Um abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando


Voltar para Introdução à Lógica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.