Sub-seção para materiais das disciplinas relacionadas à Geometria.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.
Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.
O intuito deste compartilhamento é favorecer um estudo complementar.
Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.
por rybb » Ter Ago 25, 2009 07:55
Editar MensagemNotificar esta MensagemResponder com citaçãoGeometria
por rybb em Ter Ago 25, 2009 06:48
- Uma estação de tratamento de água [ETA] localiza-se a 600 m de uma estrada reta.
Uma estação de rádio localiza-se nessa mesma estrada, a 100 m da ETA. Pretende-se
construir um restaurante, na estrada, que fique à mesma distância das duas estações.
A distância do restaurante a cada uma das estações deverá ser de:
Resposta: 625 m
- Como chegar a esse resultado?
-
rybb
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Ago 25, 2009 00:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Molina » Ter Ago 25, 2009 14:47
rybb escreveu:Editar MensagemNotificar esta MensagemResponder com citaçãoGeometria
por rybb em Ter Ago 25, 2009 06:48
- Uma estação de tratamento de água [ETA] localiza-se a 600 m de uma estrada reta.
Uma estação de rádio localiza-se nessa mesma estrada, a 100 m da ETA. Pretende-se
construir um restaurante, na estrada, que fique à mesma distância das duas estações.
A distância do restaurante a cada uma das estações deverá ser de:
Resposta: 625 m
- Como chegar a esse resultado?
Boa tarde.
Estava tentando resolver esse problema transformando-o em algo da geometria analítica. As estações e o restaurante seriam representados por pontos e a estrada por uma reta. Porém, temos um problema. A distância da ETA até a estrada (distância de ponto a reta) é dado pela menor distância entre estes, formando uma reta ortogonal. E esta distância é menor do que qualquer outra distância de outro ponto desta reta até o ponto que está fora (ETA), logo, o ponto Estação de Rádio, localizado na reta Estrada não pode distância menor até o ponto ETA. E pelo enunciado é isso que ocorre:
Do ponto ETA até a reta Estrada: 600m
Do ponto ETA até o ponto Estação de Rádio (localizado em Estrada): 100m
A explicação não ficou das melhores.
Caso eu não tenha sido claro, favor informar que eu faço um esboço do que quero falar.
Abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Elcioschin » Qua Ago 26, 2009 19:24
Certamente existe um erro no enunciado: Para a Estação de Rádio ficar na estrada ele deve distar da ETA uma distância MAIOR do que 600 m ----> 100 m é impossível
Acho que a distância entre as duas estações deve ser 1000 metros.
Faça um esquema:
Desenhe uma estrada reta horizontal AB com 800 m de comprimento (em escala). Ponto B é Estação de Rádio.
Pelo ponto A trace uma reta vertical, para cima, até um ponto P (AP = 600 m). Este ponto P é a ETA.
Note que a distãncia PB = 1000 m (hipotenusa do triângulo retângulo BAP).
Marque um ponto R na estrada distante 175 m de A. Este ponto é o restaurante. Lique R ao ponto P.
Note, na figura que PR deve ser igual a BR.
Demonstração:
No triângulo retângulo PAB ----> AP² + AB² = BP² -----> 600² + AB² = 1000² ----> AB = 800
Seja AR = x ----> BR = 800 - x ----> PR = 800 - x
No triângulo retângulo PAR ----> AP² + AR² = PR² -----> 600² + x² = (800 - x)² ----> 600² + x² = 800² - 1 600*x + x²
1 600*x = 800² - 600² ----> 1 600*x = 280 000 ----> x = 175 m
A distância d do restaurante a cada uma dsa estações vale ----> d = 800 - x ----> d = 800 - 175 ----> d = 625 m
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Molina » Qua Ago 26, 2009 23:18
Foi isso mesmo que eu imaginei, Elcio.
Muito boa a explicação.
Abraços!

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Geometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- geometria
por ehrefundini » Ter Abr 22, 2008 16:53
- 3 Respostas
- 7074 Exibições
- Última mensagem por admin

Qui Mai 01, 2008 15:57
Pedidos de Materiais
-
- geometria 2
por ehrefundini » Qua Mai 07, 2008 10:35
- 1 Respostas
- 5869 Exibições
- Última mensagem por admin

Qua Mai 07, 2008 10:59
Pedidos de Materiais
-
- Geometria
por rybb » Ter Ago 25, 2009 07:48
- 1 Respostas
- 2708 Exibições
- Última mensagem por Elcioschin

Seg Out 05, 2009 22:41
Trigonometria
-
- geometria
por cristina » Qui Nov 19, 2009 07:05
- 0 Respostas
- 2341 Exibições
- Última mensagem por cristina

Qui Nov 19, 2009 07:05
Geometria Analítica
-
- Geometria
por anapaulausp » Seg Jan 11, 2010 17:14
- 2 Respostas
- 2225 Exibições
- Última mensagem por anapaulausp

Ter Jan 12, 2010 11:43
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.