Sub-seção para materiais das disciplinas relacionadas ao cálculo.
Utilize a área de pedidos para outros ou caso a sub-seção da disciplina ainda não possua material.
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos, bibliografias etc.
Regras do fórum
O objetivo desta seção é compartilhar alguns materiais dos próprios alunos do IME-USP, formandos e formados, das disciplinas do curso de Licenciatura em Matemática.
Dentre os materiais, organizados por disciplinas, você encontrará:
Provas aplicadas, notas de aulas, listas de exercícios, gabaritos e bibliografias, além de outros materiais indicados ou fornecidos pelos próprios professores.
A fonte e os créditos do autor devem ser citados sempre que disponíveis.
O intuito deste compartilhamento é favorecer um estudo complementar.
Utilize a seção de pedidos para outros ou caso a sub-seção ainda não possua material.
A pesquisa do fórum facilita a localização de materiais e outros assuntos já publicados.
por sandra silva » Dom Set 14, 2008 20:29
tenho esta duvida
(raix quadrada de 4x^2+ 3x + 7)- x (-x fora da raiz )
Lim quando xtende a + infinito
o conjugado ; (?4x2+ 3x+7 -x) (?4x2+ 3x+7 +x) / (?4x2+ 3x+7 +x=
4x+3x+7- x/?4x2+ 3x+7+x =6x+7/?4x2+ 3x+7 +x =6/5
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por juliomarcos » Seg Set 15, 2008 19:16
Sandra, tenta escrever sua dúvida usando o LaTeX. É melhor pra a gente entender.
-
juliomarcos
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Set 14, 2008 00:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por sandra silva » Ter Set 16, 2008 00:44
sqrt{4x^2+3x +7}-x
lim_{+infinito}
usei o conjugado e gostaria de saber onde errei, conforme informação anterior
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por Molina » Ter Set 16, 2008 01:03
sandra silva escreveu:sqrt{4x^2+3x +7}-x
lim_{+infinito}
usei o conjugado e gostaria de saber onde errei, conforme informação anterior
coloque
![[tex] [tex]](/latexrender/pictures/ffdc30d5c40062d678765bdcd9e907d2.png)
antes do codigo em LaTeX e o mesmo código com uma / (barra) antes do tex no final.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por sandra silva » Ter Set 16, 2008 20:29
Colega, naoa sei usar o latex pois nao encontrei o infinito por isso escrevi
segue a questao

\lim_+infinito
conforme os calculos que envie acima por favor veja onde errei
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por sandra silva » Ter Set 16, 2008 20:30
usei o conjugado
obrigada
sandra
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por sandra silva » Ter Set 16, 2008 21:02
\sqrt[{4x^2+3x +7}-x
\lim_{\infty}
fix o conjugado, mas nao sei se esta certo
-
sandra silva
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Ter Ago 26, 2008 22:00
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: lic em matematica
- Andamento: cursando
por admin » Ter Set 23, 2008 16:28
Olá Sandra!
Se entendi a expressão, você pretendia escrever:
![\lim_{x \rightarrow +\infty} \left[ \sqrt{4x^2+3x+7}-x \right] = ? \lim_{x \rightarrow +\infty} \left[ \sqrt{4x^2+3x+7}-x \right] = ?](/latexrender/pictures/5ae8b52245c36a06c0137f2071dc6342.png)
Onde temos uma indeterminação do tipo

.
Podemos sim multiplicar pelo conjugado o numerador e demoninador, pois a expressão não é alterada (é o mesmo que multiplicar por 1). Mas, depois teremos que fazer um passo que já pode ser feito agora. Tente colocar

em evidência:
![L = \lim_{x \rightarrow +\infty} \left( \sqrt{4x^2+3x+7}-x \right) =
\lim_{x \rightarrow +\infty} \left[ x \left(\frac{\sqrt{4x^2+3x+7}}{x}-1 \right) \right] L = \lim_{x \rightarrow +\infty} \left( \sqrt{4x^2+3x+7}-x \right) =
\lim_{x \rightarrow +\infty} \left[ x \left(\frac{\sqrt{4x^2+3x+7}}{x}-1 \right) \right]](/latexrender/pictures/411210032b8b04c396c18c956c99cd00.png)
Depois:
![L = \lim_{x \rightarrow +\infty} \left[ x \left(\sqrt{\frac{4x^2+3x+7}{x^2}}-1 \right) \right] L = \lim_{x \rightarrow +\infty} \left[ x \left(\sqrt{\frac{4x^2+3x+7}{x^2}}-1 \right) \right]](/latexrender/pictures/942af66a0b07d3c156da0d2dd68e4eb3.png)
![L = \lim_{x \rightarrow +\infty} \left[ x \left(\sqrt{4+\frac{3}{x}+\frac{7}{x^2}}-1 \right) \right] L = \lim_{x \rightarrow +\infty} \left[ x \left(\sqrt{4+\frac{3}{x}+\frac{7}{x^2}}-1 \right) \right]](/latexrender/pictures/8ee1c1e07977439109c51fdc27a3812e.png)
No limite teremos:

Bons estudos!
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
Voltar para Cálculo
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Calculo]Alguém me ajuda nessa questão de calculo pfv.
por moeni » Seg Abr 04, 2022 21:54
- 0 Respostas
- 5548 Exibições
- Última mensagem por moeni

Seg Abr 04, 2022 21:54
Cálculo: Limites, Derivadas e Integrais
-
- [calculo] calculo de integral - coordenada esferica
por fatalshootxd » Ter Mar 31, 2015 00:43
- 1 Respostas
- 4346 Exibições
- Última mensagem por adauto martins

Sáb Abr 04, 2015 16:13
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo] Cálculo Polinômio Interpolador
por barbara-rabello » Qui Out 22, 2015 20:07
- 1 Respostas
- 2509 Exibições
- Última mensagem por adauto martins

Sáb Out 24, 2015 11:00
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo] Exercícios de Calculo
por Thomas » Seg Mai 16, 2016 16:39
- 0 Respostas
- 0 Exibições
- Última mensagem por Visitante

Qua Dez 31, 1969 22:00
Cálculo: Limites, Derivadas e Integrais
-
- [Cálculo: Limites, Derivadas e Integrais] Cálculo de limites
por jeferson lopes » Ter Mar 26, 2013 08:49
- 2 Respostas
- 4791 Exibições
- Última mensagem por jeferson lopes

Ter Mar 26, 2013 11:52
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.