Materiais sobre Lógica.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por jaquecox » Seg Mai 30, 2011 21:15
como se chega ao resultado, quero entender o raciocínio:
seja N o menor número inteiro positivo que multiplicado por 33 dá um produto cujos algarismos são todos iguais a 7.É correto afirmar que:
a) N é par
b) o algarismo das unidades de N é 7
c) o algarismo das dezenas de N é menor que 4
d) o algarismo das centenas de N é maior que 5
e) a soma dos algarismos de N é igual a 25
-
jaquecox
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Ter Abr 26, 2011 21:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Ter Mai 31, 2011 02:29
Boa noite.
Seja N o número de alguns algarismos que não conhecemos e não sabemos quantos algarismos possui.
Mas, temos uma certeza que o algarismo da unidade de N é 9, pois _______9 x 33 = 777...777
Com isso já excluimos as alternativas a) e b).
Para descobrir o algarismo da dezena será análogo ao primeiro número:
_______69 x 33 = 777...777
Com isso já excluimos a alternativa c).
Para descobrir o algarismo da centena será análogo aos outros número:
______569 x 33 = 777...777
Com isso já excluimos a alternativa d).
O que nos garante que alternativa correta é a
letra e): 23569

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida em Raciocínio Lógico - Exercício
por pkutwak » Dom Jun 12, 2011 12:37
- 1 Respostas
- 2335 Exibições
- Última mensagem por deangelo

Dom Jun 12, 2011 14:17
Dúvidas Pendentes (aguardando novos colaboradores)
-
- raciocinio lógico
por TEKA » Qui Mar 25, 2010 20:30
- 3 Respostas
- 8765 Exibições
- Última mensagem por TEKA

Sex Mar 26, 2010 10:44
Álgebra Elementar
-
- Raciocínio lógico
por Abelardo » Seg Mar 07, 2011 05:03
- 1 Respostas
- 7602 Exibições
- Última mensagem por Renato_RJ

Seg Mar 07, 2011 06:20
Álgebra Elementar
-
- Raciocínio lógico!
por GABRUEL » Sáb Jul 16, 2011 00:09
- 2 Respostas
- 2813 Exibições
- Última mensagem por GABRUEL

Sáb Jul 16, 2011 00:43
Álgebra Elementar
-
- Raciocínio Lógico
por glau » Ter Nov 08, 2011 13:26
- 2 Respostas
- 2734 Exibições
- Última mensagem por MarceloFantini

Ter Nov 08, 2011 16:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.