Materiais sobre Lógica.
Utilize a seção de pedidos para outros que não estejam disponíveis.
As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por pkutwak » Ter Fev 23, 2010 23:49
Sabendo que as proposições p e q são verdadeiras e que as proposições r e s são falsas, assinale a opção que apresenta valor lógico falso nas proposições abaixo. O resto da questão está em um arquivo anexo.
Não sei de onde partir, sei as tabelas verdades. Ele diz que p e q são verdadeiras então atribuo V para p e q e F para r e s, assim monto as tabelas verdades para descobrir qual encaixa-se no resultado.
No resultado final, tudo tem de dar falso?
p q r s
V V F F
V V F F
V V F F
V V F F
O primeiro item dá para escrever aqui. O latex não funcionou bem.
a) ~r então p ^ q
~r, é tudo falso e inverto os valores, fica V,V,V,V. e depois comparo com o resultado de p ^ q.
Acho que é essa forma de resolver, não?
Você não está autorizado a ver ou baixar esse anexo.
-
pkutwak
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Ter Fev 23, 2010 23:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Informática
- Andamento: formado
Voltar para Lógica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- sistema de proposiçoes e conectivos
por flavio neves » Ter Fev 23, 2016 20:16
- 0 Respostas
- 2300 Exibições
- Última mensagem por flavio neves

Ter Fev 23, 2016 20:16
Lógica
-
- Ajuda pra resolver exercicio
por Brunna013 » Ter Jun 03, 2008 11:22
- 4 Respostas
- 41933 Exibições
- Última mensagem por Molina

Seg Mai 03, 2010 14:33
Trigonometria
-
- dúvida em resolver o exercício
por angeloka » Ter Out 05, 2010 18:31
- 4 Respostas
- 3728 Exibições
- Última mensagem por LuizAquino

Ter Mar 29, 2011 11:55
Sequências
-
- Dificuldade em resolver o exercicio nº 2
por Catriane Moreira » Sáb Nov 20, 2010 23:01
- 1 Respostas
- 1996 Exibições
- Última mensagem por alexandre32100

Seg Nov 22, 2010 14:42
Matemática Financeira
-
- duvida pra resolver exercicio
por simoneribeiro » Qui Set 20, 2012 23:06
- 1 Respostas
- 1531 Exibições
- Última mensagem por young_jedi

Sex Set 21, 2012 13:32
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.