• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda com questões de múltipla escolha

Materiais sobre Álgebra.
Utilize a seção de pedidos para outros que não estejam disponíveis.

As fontes dos arquivos serão diversas e deverão ser citadas sempre que possível, mantendo totalmente os créditos dos respectivos autores.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Ajuda com questões de múltipla escolha

Mensagempor 1marcus » Sex Set 11, 2020 17:07

!)O produto de vetores que está definido no espaço bidimensional e no espaço tridimensional é o produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial

2)O produto de vetores resultante da soma dos produtos das componentes correspondentes entre dois vetores, chama-se produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial

3)O teste de ortogonalidade entre dois vetores é realizado por meio do produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial

4)O produto entre os vetores u, v e w é zero se um dos vetores é nulo, se dois deles são colineares ou se os três são coplanares. Que produto é esse?
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial

5)Um vetor simultaneamente ortogonal aos vetores u e v é um vetor resultante do produto:
Grupo de escolhas da pergunta
()Misto
()Escalar
()Vetorial

6)O produto misto entre os vetores u, v e w (todos não nulos) é nulo quando:
Grupo de escolhas da pergunta
()Não existe nenhuma relação de paralelismo entre os vetores.
()Os três vetores situam-se no mesmo plano.
()Um dos vetores é simultaneamente ortogonal aos outros dois vetores.
1marcus
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Nov 02, 2018 15:44
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Álgebra

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.