Materiais úteis diversos serão referenciados ou digitalizados e compartilhados aqui.
Caso tenha interesse ou necessite estudar algum assunto específico, utilize este espaço para fazer o seu pedido.
Quando um colaborador possuir o material relacionado, ele será postado na seção de conteúdos diversos acima.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por Abner » Dom Fev 27, 2011 21:49
Gostaria de pedir algum material de como calcular area de cilindro e cone.Obrigado
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Abelardo » Seg Mar 07, 2011 02:02
A área do cilindro A=Área do círculo x Altura do Cilindro
A área do Cone,

. Sendo B a área do círculo e H a altura. Pode usar essa fórmula para calcular uma ''pirâmide'' também.
-

Abelardo
- Colaborador Voluntário

-
- Mensagens: 159
- Registrado em: Qui Mar 03, 2011 01:45
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Pedidos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cilindro Circular Reto Inscrito em Cone
por OtavioBonassi » Ter Jul 12, 2011 18:29
- 1 Respostas
- 4103 Exibições
- Última mensagem por Adriano Tavares

Dom Jan 01, 2012 17:51
Geometria Espacial
-
- AREA MAXIMA DE CONE RELACAO COM CILINDRO
por netochaves » Qui Mai 16, 2013 17:09
- 0 Respostas
- 1682 Exibições
- Última mensagem por netochaves

Qui Mai 16, 2013 17:09
Geometria Espacial
-
- ME AJUDE POR FAVOR:Cilindro circular reto inscrito no cone
por netochaves » Sex Abr 05, 2013 14:32
- 0 Respostas
- 1699 Exibições
- Última mensagem por netochaves

Sex Abr 05, 2013 14:32
Cálculo: Limites, Derivadas e Integrais
-
- Cilindro circular reto inscrito num cone reto
por netochaves » Qui Abr 04, 2013 18:04
- 10 Respostas
- 6946 Exibições
- Última mensagem por netochaves

Qua Mai 01, 2013 16:31
Cálculo: Limites, Derivadas e Integrais
-
- [Calculo de volumes] Dedução volume do cone
por ronaldo9nine » Qua Nov 20, 2013 10:31
- 1 Respostas
- 3493 Exibições
- Última mensagem por e8group

Qua Nov 20, 2013 20:06
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.