• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Só consigo chegar a 24 dias exatos.

Materiais úteis diversos serão referenciados ou digitalizados e compartilhados aqui.
Caso tenha interesse ou necessite estudar algum assunto específico, utilize este espaço para fazer o seu pedido.

Quando um colaborador possuir o material relacionado, ele será postado na seção de conteúdos diversos acima.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Só consigo chegar a 24 dias exatos.

Mensagempor Evaldo » Qua Out 14, 2009 13:19

Uma granja possui 360 aves e cada uma recebe, diariamente, a mesma quantia de ração. Nesse esquema, o estoque de ração existente hoje na granja é suficiente para alimentar as aves por, exatamente, 40 dias. Se hoje forem adquiridas 120 novas aves e, ao mesmo tempo, a quantidade diária de ração de cada ave for reduzida em 20%, então o estoque de ração da granja será suficiente para alimentar as 480 aves por:
a) mais de 35 dias.
b) mais de 30 e menos de 35 dias.
c) mais de 25 e menos de 30 dias.
d) mais de 20 e menos de 25 dias
e) menos de 20 dias.

aves dias percentagem
360 40 100%
480 x 80%
(+) (-) (-)

40/x = 48/36 * 10/8
x = 24

Onde estou errado.
Há homens que lutam um dia, e são bons;
Há outros que lutam um ano, e são melhores;
Há aqueles que lutam muitos anos, e são muito bons;
Porém há os que lutam toda a vida
Estes são os imprescindíveis
Bertold Brecht
Evaldo
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Out 14, 2009 13:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências Contábeis
Andamento: formado

Re: Só consigo chegar a 24 dias exatos.

Mensagempor Lucio Carvalho » Qua Out 14, 2009 18:52

Olá Evaldo,
Tentarei explicar o problema.
Primeiramente fazemos 360 x 40 = 14400
Ficamos, assim, a saber que o número de doses de ração existente hoje é de 14400

Vamos supor que cada dose = 100 gramas
Então, temos hoje 14400 x 100 gramas = 1440000 gramas

Se a quantidade diária de ração de cada ave for reduzida em 20%, cada ave passará a comer: 80% x 100 gramas = 80 gramas

1440000/80 = 18000
Quer dizer, que passamos a ter 18000 doses de ração

Como actualmente temos 480 aves, fazemos:

18000/480 = 37,5

Assim, penso que a resposta correcta é a alínea a) mais do que 35 dias.
No entanto, aguardo a opinião de outros participantes.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado


Voltar para Pedidos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D