• Anúncio Global
    Respostas
    Exibições
    Última mensagem

EDO

MAT0130
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

EDO

Mensagempor borges » Sex Ago 26, 2011 22:37

Verifique se a(s) função(s) dadas constituem solução da equação diferencial.

a) y’’ + 2y’ – 3y = 0; y_1(t) = e^{-3t} e y_2(t) = e^{t}

b) y’’’’ + 4y’’’ + 3y = t; y_1(t) = t/3 e y_2(t) = e^{-t} + t/3

c) t^{2} y’’ + 5t y’ + 4y = 0; t > 0; y_1(t) = t^{-2} e y_2(t) = t^{-2} ln t
borges
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 22, 2011 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: EDO

Mensagempor LuizAquino » Sex Ago 26, 2011 23:33

Quais foram as suas dúvidas?

Quais foram as suas tentativas?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: EDO

Mensagempor Neperiano » Sáb Ago 27, 2011 12:37

Ola

É só tu derivar as duas equações que estão ao lado da função, e depois substituir e verificar se igual ao que está pedindo

Nos mostre suas tentativas

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: EDO

Mensagempor borges » Seg Ago 29, 2011 10:56

Consegui fazer as letras a e b, mas a letra c, infelizmente não consegui tudo. Veja a resolução da letra c, até onde consegui. Se possível me ajude a continuar.

y_1'(t)=\frac{-2}{t^3}

y_1''(t)=\frac{6}{t^4}

Substituindo y_1''(t),y_1'(t) e y_1(t) na equação temos :

t^2\frac{6}{t^4}+5t\frac{-2}{t^3} + 4t^{-2}=0

\frac{6t^2}{t^4}-\frac{10t}{t^3}+4t^{-2}=0

6t^{-2}-10t^{-2}+4t^{-2}=0

0=0

Logo y_1 é solução da equação.

y_2'(t)=\frac{1}{t^3}-\frac{2ln(t)}{t^3}

y_2''(t)=\frac{6ln(t)}{t^4}-\frac{5}{t^4}

Substituindo y_2''(t),y_2'(t) e y_2(t) na equação temos :

t^2 (\frac{6ln(t)}{t^4}-\frac{5}{t^4}) + 5t (\frac{1}{t^3}-\frac{2ln(t)}{t^3}) + 4t^{-2}=0

t^2 (\frac{6ln(t)-5}{t^4}+\frac{5t-10ln(t)t}{t^3}) + 4t^{-2}ln(t)=0

A partir daqui não consegui mais. Poderia me ajudar a continuar?
borges
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 22, 2011 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: EDO

Mensagempor LuizAquino » Seg Ago 29, 2011 13:32

borges escreveu:y_2'(t)=\frac{1}{t^3}-\frac{2ln(t)}{t^3}

y_2''(t)=\frac{6ln(t)}{t^4}-\frac{5}{t^4}

Ok.

borges escreveu:t^2 (\frac{6ln(t)}{t^4}-\frac{5}{t^4}) + 5t (\frac{1}{t^3}-\frac{2ln(t)}{t^3}) + 4t^{-2}=0

Apenas faltou o \ln t no último termo.


borges escreveu:t^2 (\frac{6ln(t)-5}{t^4}+\frac{5t-10ln(t)t}{t^3}) + 4t^{-2}ln(t)=0

Faltaram dois parênteses. Um "fechando" a primeira fração e o outro "abrindo" a segunda fração.

borges escreveu:A partir daqui não consegui mais. Poderia me ajudar a continuar?

Considere a equação:

t^2\left(\frac{6\ln t}{t^4}-\frac{5}{t^4}\right)+ 5t \left(\frac{1}{t^3}-\frac{2\ln t}{t^3}\right)+ 4t^{-2}\ln t =0

Note que ela pode ser reescrita como:

\frac{6\ln t}{t^2}-\frac{5}{t^2} + \frac{5}{t^2} - \frac{10\ln t}{t^2} + \frac{4}{t^2}\ln t =0

Continue a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: EDO

Mensagempor borges » Seg Ago 29, 2011 22:44

ok. Obrigado.
borges
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 22, 2011 21:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Equações Diferenciais Ordinárias e Aplicações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D