• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gram-Schmidt

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Gram-Schmidt

Mensagempor ewald » Sex Mai 11, 2012 15:58

Ola, estou tentando fazer estas questoes (abaixo) do capitulo de AL sobre vetores ortonormais. Bem acontece que a primeira o gabarito nao bate e a terceira quando vou verificar se os vetores sao realmente ortogonais entre si acontece de eles nao serem. Bem vou botar as questoes aqui embaixo e o que eu tentei fazer e se alguem tiver uma dica, correçao, ... :
Obs.: Os exercicios abaixo sao retirados do livro Algebra com Aplicaçoes - Steven J. Leon.

1) Para a matriz A a seguir, use o processo de Gram-Schmidt para encontrar ortonormal para I(A).
A = \begin{pmatrix}
   -1 & 3  \\ 
   1 & 5 
\end{pmatrix}
Bem primeiro, entao encontrei a base para I(A). ( I(A) é, segundo meu professor, imagem de A )
I(A) = Vetores linha não nulos da matriz A transposta apos o escalonamento.
Escalonando A transposta fica-se com a matriz:
\begin{pmatrix}
   -1 & 1  \\ 
   0 & 8 
\end{pmatrix}
Ou seja I(A) = [(-1 , 1) , (0 , 8)] Obs.: vetores sao transpostos.
Ok tendo as base de I(A), basta aplicar Gram-Schmidt.
Onde v1 e v2 sao respectivamente (-1,1) e (0,8)
Conserva-se um vetor (normalizando-o) e acha-se o outro, ou seja:
{u}_{1} = (-1 , 1)
\frac{1}{\sqrt[2]{2}}


{u}_{2} = {v}_{2} - {proj}_{{u}_{1}}({v}_{2})
Calculando ...
(0,8) - [(0,8).(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})].(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})
(0,8) - (-4,4)
{u}_{2} = (4,4) ... normalizando u2 ficamos com :

{u}_{2} = (4,4). \frac{1}{4\sqrt[2]{2}}
{u}_{2} = (\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})

Bem entao os vetores ortonormais para base de I(A) sao:
\left[ {(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} , {(\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} \right]

Esta foi minha resposta e a certa no gabarito é : {(2,1)}^{T}

2) Fatore a matriz A ( é a mesma do exercicio de cima) em que o produto QR, onde Q é uma matriz ortogonal e R é trianular superior.

Bem esta questao, na verdade nao tenho certeza do que é pra fazer, portanto se alguem tiver algo sobre o assunto ou puder indicar um site ou video, uma vez que nao achei em nenhum livro ate agora.

3) Dada a base {(1,2,-2) , (4,3,2), (1,2,1)} para R^3 use o processo de Gram-Schmidt para encontrar uma base ortonormal. Obs.: os vetores sao transpostos.
Fiz como a primeira questao:

{u}_{1} = (1,2,-2) . \frac{1}{\sqrt[2]{5}} (primeiro vetor normalizado)
{u}_{2} = {v}_{2} - ({proj}_{{u}_{1}}{v}_{2}) . {u}_{1}
{u}_{3} = {v}_{3} - [ ({proj}_{{u}_{1}}{v}_{3}) . {u}_{1} ] - [ ({proj}_{{u}_{2}}{v}_{3}) . {u}_{2} ]
Onde, v1, v2 e v3 sao respectivamente (1,2,-2) , (4,3,2) , (1,2,1).

{u}_{2} = (4,3,2) - 6.\left(\frac{1}{\sqrt[2]{5}},\frac{2}{\sqrt[2]{5}}, \frac{-2}{\sqrt[2]{5}}\right)
{u}_{2} = \left(\frac{14}{5},\frac{3}{5},\frac{22}{5} \right) ... normalizando
{u}_{2} = \left(\frac{14}{\sqrt[2]{689}},\frac{3}{\sqrt[2]{689}},\frac{22}{\sqrt[2]{689}} \right)

Agora u3 pra resumir ja ue sao bastantes calculos vou botar somente o que deu, mas foi feito como esta ali.
{u}_{3} = \left(\frac{-1562}{3445},\frac{2126}{3445},\frac{2959}{3445} \right) ... ja normalizado.

Bem deu isso e o gabarito diz \left[{{\left(1-2\alpha, \alpha \right)}^{T}| \alpha real} \right]

Obrigado a quem ler.
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Gram-Schmidt

Mensagempor ewald » Sex Mai 11, 2012 22:21

Ok, esquece a questao 3,, embora nao esteja batendo com o gabarito, o qual parece estar errado, consegui deixa-los ortonormais. Meu erro foi na verdade ridiculo. Errei na normalizaçao do 1º vetor e o erro obviamente se propagou.
No entanto as outras continuo sem saber, alias a 1ª eu realmente acho que o gabarito esta trocado.
Obrigado
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.