• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Gram-Schmidt

MAT0134
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

Gram-Schmidt

Mensagempor ewald » Sex Mai 11, 2012 15:58

Ola, estou tentando fazer estas questoes (abaixo) do capitulo de AL sobre vetores ortonormais. Bem acontece que a primeira o gabarito nao bate e a terceira quando vou verificar se os vetores sao realmente ortogonais entre si acontece de eles nao serem. Bem vou botar as questoes aqui embaixo e o que eu tentei fazer e se alguem tiver uma dica, correçao, ... :
Obs.: Os exercicios abaixo sao retirados do livro Algebra com Aplicaçoes - Steven J. Leon.

1) Para a matriz A a seguir, use o processo de Gram-Schmidt para encontrar ortonormal para I(A).
A = \begin{pmatrix}
   -1 & 3  \\ 
   1 & 5 
\end{pmatrix}
Bem primeiro, entao encontrei a base para I(A). ( I(A) é, segundo meu professor, imagem de A )
I(A) = Vetores linha não nulos da matriz A transposta apos o escalonamento.
Escalonando A transposta fica-se com a matriz:
\begin{pmatrix}
   -1 & 1  \\ 
   0 & 8 
\end{pmatrix}
Ou seja I(A) = [(-1 , 1) , (0 , 8)] Obs.: vetores sao transpostos.
Ok tendo as base de I(A), basta aplicar Gram-Schmidt.
Onde v1 e v2 sao respectivamente (-1,1) e (0,8)
Conserva-se um vetor (normalizando-o) e acha-se o outro, ou seja:
{u}_{1} = (-1 , 1)
\frac{1}{\sqrt[2]{2}}


{u}_{2} = {v}_{2} - {proj}_{{u}_{1}}({v}_{2})
Calculando ...
(0,8) - [(0,8).(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})].(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})
(0,8) - (-4,4)
{u}_{2} = (4,4) ... normalizando u2 ficamos com :

{u}_{2} = (4,4). \frac{1}{4\sqrt[2]{2}}
{u}_{2} = (\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})

Bem entao os vetores ortonormais para base de I(A) sao:
\left[ {(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} , {(\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} \right]

Esta foi minha resposta e a certa no gabarito é : {(2,1)}^{T}

2) Fatore a matriz A ( é a mesma do exercicio de cima) em que o produto QR, onde Q é uma matriz ortogonal e R é trianular superior.

Bem esta questao, na verdade nao tenho certeza do que é pra fazer, portanto se alguem tiver algo sobre o assunto ou puder indicar um site ou video, uma vez que nao achei em nenhum livro ate agora.

3) Dada a base {(1,2,-2) , (4,3,2), (1,2,1)} para R^3 use o processo de Gram-Schmidt para encontrar uma base ortonormal. Obs.: os vetores sao transpostos.
Fiz como a primeira questao:

{u}_{1} = (1,2,-2) . \frac{1}{\sqrt[2]{5}} (primeiro vetor normalizado)
{u}_{2} = {v}_{2} - ({proj}_{{u}_{1}}{v}_{2}) . {u}_{1}
{u}_{3} = {v}_{3} - [ ({proj}_{{u}_{1}}{v}_{3}) . {u}_{1} ] - [ ({proj}_{{u}_{2}}{v}_{3}) . {u}_{2} ]
Onde, v1, v2 e v3 sao respectivamente (1,2,-2) , (4,3,2) , (1,2,1).

{u}_{2} = (4,3,2) - 6.\left(\frac{1}{\sqrt[2]{5}},\frac{2}{\sqrt[2]{5}}, \frac{-2}{\sqrt[2]{5}}\right)
{u}_{2} = \left(\frac{14}{5},\frac{3}{5},\frac{22}{5} \right) ... normalizando
{u}_{2} = \left(\frac{14}{\sqrt[2]{689}},\frac{3}{\sqrt[2]{689}},\frac{22}{\sqrt[2]{689}} \right)

Agora u3 pra resumir ja ue sao bastantes calculos vou botar somente o que deu, mas foi feito como esta ali.
{u}_{3} = \left(\frac{-1562}{3445},\frac{2126}{3445},\frac{2959}{3445} \right) ... ja normalizado.

Bem deu isso e o gabarito diz \left[{{\left(1-2\alpha, \alpha \right)}^{T}| \alpha real} \right]

Obrigado a quem ler.
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando

Re: Gram-Schmidt

Mensagempor ewald » Sex Mai 11, 2012 22:21

Ok, esquece a questao 3,, embora nao esteja batendo com o gabarito, o qual parece estar errado, consegui deixa-los ortonormais. Meu erro foi na verdade ridiculo. Errei na normalizaçao do 1º vetor e o erro obviamente se propagou.
No entanto as outras continuo sem saber, alias a 1ª eu realmente acho que o gabarito esta trocado.
Obrigado
ewald
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Qui Mai 05, 2011 17:40
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Eletrica
Andamento: cursando


Voltar para Introdução à Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.