MAT0134
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por ewald » Sex Mai 11, 2012 15:58
Ola, estou tentando fazer estas questoes (abaixo) do capitulo de AL sobre vetores ortonormais. Bem acontece que a primeira o gabarito nao bate e a terceira quando vou verificar se os vetores sao realmente ortogonais entre si acontece de eles nao serem. Bem vou botar as questoes aqui embaixo e o que eu tentei fazer e se alguem tiver uma dica, correçao, ... :
Obs.: Os exercicios abaixo sao retirados do livro Algebra com Aplicaçoes - Steven J. Leon.
1) Para a matriz A a seguir, use o processo de Gram-Schmidt para encontrar ortonormal para I(A).

Bem primeiro, entao encontrei a base para I(A). ( I(A) é, segundo meu professor, imagem de A )
I(A) = Vetores linha não nulos da matriz A transposta apos o escalonamento.
Escalonando A transposta fica-se com a matriz:

Ou seja I(A) = [(-1 , 1) , (0 , 8)] Obs.: vetores sao transpostos.
Ok tendo as base de I(A), basta aplicar Gram-Schmidt.
Onde v1 e v2 sao respectivamente (-1,1) e (0,8)
Conserva-se um vetor (normalizando-o) e acha-se o outro, ou seja:
![{u}_{1} = (-1 , 1)
\frac{1}{\sqrt[2]{2}} {u}_{1} = (-1 , 1)
\frac{1}{\sqrt[2]{2}}](/latexrender/pictures/e4ae39fd02e9ba294a180a296488ff77.png)

Calculando ...
![(0,8) - [(0,8).(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})].(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}}) (0,8) - [(0,8).(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})].(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})](/latexrender/pictures/6566b2ed7e243ff3dadb91a0c1b315fc.png)


... normalizando u2 ficamos com :
![{u}_{2} = (4,4). \frac{1}{4\sqrt[2]{2}} {u}_{2} = (4,4). \frac{1}{4\sqrt[2]{2}}](/latexrender/pictures/04901a4b09a0d7585cf364bdbc08f4fa.png)
![{u}_{2} = (\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}}) {u}_{2} = (\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})](/latexrender/pictures/7daa8ffddbaf21c64c146e8a2e69a9b8.png)
Bem entao os vetores ortonormais para base de I(A) sao:
![\left[ {(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} , {(\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} \right] \left[ {(-\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} , {(\frac{1}{\sqrt[2]{2}},\frac{1}{\sqrt[2]{2}})}^{T} \right]](/latexrender/pictures/35fe3b29950e3626115ee0de9a9d719f.png)
Esta foi minha resposta e a certa no gabarito é :

2) Fatore a matriz A ( é a mesma do exercicio de cima) em que o produto QR, onde Q é uma matriz ortogonal e R é trianular superior.
Bem esta questao, na verdade nao tenho certeza do que é pra fazer, portanto se alguem tiver algo sobre o assunto ou puder indicar um site ou video, uma vez que nao achei em nenhum livro ate agora.
3) Dada a base {(1,2,-2) , (4,3,2), (1,2,1)} para R^3 use o processo de Gram-Schmidt para encontrar uma base ortonormal. Obs.: os vetores sao transpostos.
Fiz como a primeira questao:
![{u}_{1} = (1,2,-2) . \frac{1}{\sqrt[2]{5}} {u}_{1} = (1,2,-2) . \frac{1}{\sqrt[2]{5}}](/latexrender/pictures/5c4b425be54860390a722404c69d7d49.png)
(primeiro vetor normalizado)

![{u}_{3} = {v}_{3} - [ ({proj}_{{u}_{1}}{v}_{3}) . {u}_{1} ] - [ ({proj}_{{u}_{2}}{v}_{3}) . {u}_{2} ] {u}_{3} = {v}_{3} - [ ({proj}_{{u}_{1}}{v}_{3}) . {u}_{1} ] - [ ({proj}_{{u}_{2}}{v}_{3}) . {u}_{2} ]](/latexrender/pictures/5bab950ab08061df492e11c10df9b096.png)
Onde, v1, v2 e v3 sao respectivamente (1,2,-2) , (4,3,2) , (1,2,1).
![{u}_{2} = (4,3,2) - 6.\left(\frac{1}{\sqrt[2]{5}},\frac{2}{\sqrt[2]{5}}, \frac{-2}{\sqrt[2]{5}}\right) {u}_{2} = (4,3,2) - 6.\left(\frac{1}{\sqrt[2]{5}},\frac{2}{\sqrt[2]{5}}, \frac{-2}{\sqrt[2]{5}}\right)](/latexrender/pictures/d6b97f163714f39c344f9d987ff84f53.png)

... normalizando
![{u}_{2} = \left(\frac{14}{\sqrt[2]{689}},\frac{3}{\sqrt[2]{689}},\frac{22}{\sqrt[2]{689}} \right) {u}_{2} = \left(\frac{14}{\sqrt[2]{689}},\frac{3}{\sqrt[2]{689}},\frac{22}{\sqrt[2]{689}} \right)](/latexrender/pictures/26d75d3534f510e5fbe0aaf9a6a4b7ec.png)
Agora u3 pra resumir ja ue sao bastantes calculos vou botar somente o que deu, mas foi feito como esta ali.

... ja normalizado.
Bem deu isso e o gabarito diz
![\left[{{\left(1-2\alpha, \alpha \right)}^{T}| \alpha real} \right] \left[{{\left(1-2\alpha, \alpha \right)}^{T}| \alpha real} \right]](/latexrender/pictures/ac4ece6028d7f5a811df24b7c7154175.png)
Obrigado a quem ler.
-
ewald
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Qui Mai 05, 2011 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
por ewald » Sex Mai 11, 2012 22:21
Ok, esquece a questao 3,, embora nao esteja batendo com o gabarito, o qual parece estar errado, consegui deixa-los ortonormais. Meu erro foi na verdade ridiculo. Errei na normalizaçao do 1º vetor e o erro obviamente se propagou.
No entanto as outras continuo sem saber, alias a 1ª eu realmente acho que o gabarito esta trocado.
Obrigado
-
ewald
- Usuário Dedicado

-
- Mensagens: 30
- Registrado em: Qui Mai 05, 2011 17:40
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Eletrica
- Andamento: cursando
Voltar para Introdução à Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.