• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Método de Newton] - Duvida nessa questão

MAP0151
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

[Método de Newton] - Duvida nessa questão

Mensagempor zifles2012 » Seg Set 17, 2012 16:13

De acordo com o método de Newton descubra as raizes da função
Código: Selecionar todos
[tex]x^2+lnx = 0[/tex]

Eu queria saber apenas por onde começar.. obrigado
zifles2012
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Set 17, 2012 16:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Método de Newton] - Duvida nessa questão

Mensagempor LuizAquino » Seg Set 17, 2012 19:55

zifles2012 escreveu:De acordo com o método de Newton descubra as raizes da função
x^2+lnx = 0
Eu queria saber apenas por onde começar.. obrigado


Você já deve saber que o Método de Newton tem o seguinte formato:

x_{n+1} = x_n - \dfrac{f(x_n)}{f^\prime(x_n)}

Analisando a equação dada (que foi x^2+\ln x = 0), podemos criar a função f(x) = x^2 + \ln x . O objetivo é determinar a raiz (ou raízes) dessa função. Ou seja, o valor de x tal que f(x) = 0.

Você já deve saber que f^\prime(x) = 2x + \frac{1}{x} . Desse modo, você terá o esquema:

x_{n+1} = x_n - \dfrac{x_n^2 + \ln x_n}{2x_n + \dfrac{1}{x_n}}

Agora escolha um chute inicial x_0 e efetue o processo iterativo quantos passos desejar. Por exemplo, você pode parar em um passo k tal que f(x_k) seja tão próximo de zero quanto você deseja.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo Numérico e Aplicações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)