A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por geriane » Qui Abr 22, 2010 16:01
Em um grupo de três crianças de idades diferentes foi notado que a soma das duas idades menores menos a maior é igual a 2 anos e que a menor idade mais o dobro da maior é igual a 28 anos. As idades são números inteiros positivos. Dentre todas as possibilidades, existe uma em que a soma das idades das crianças é a maior possível, observando-se sempre o fato de as crianças terem idades diferentes. Essa soma, em anos, é? a resposta é 26 mas o meu sempre dá 22.
-
geriane
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Sáb Abr 03, 2010 10:24
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura
- Andamento: formado
por Molina » Qui Abr 22, 2010 20:48
Boa noite, geriane.
Primeiramente chamei
a,
b e
c as idades das crianças, respectivamente, da mais nova para a mais velha. O problema nos traz duas informações que poderemos montar duas equações que nos ajudaram a encontrar esse valor. São elas:


Note o seguinte, como as 3 idades são positivas, e utilizando a segunda equação, o valor de
c não será 14, pois

e a idade de a teria que ser 0 (o que não é positiva).
c também não será 13, pois
a e
b teriam a mesma idade (4 anos). Já

, teríamos

e

o que satisfaz as condiçoes do problema e a soma é 26. Tomando
c como qualquer outro valor não dá certo.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Desafios Fáceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- me ajudem ai !!
por weverton » Ter Jun 15, 2010 23:45
- 1 Respostas
- 1631 Exibições
- Última mensagem por Mathmatematica

Qua Jun 16, 2010 01:18
Sistemas de Equações
-
- me ajudem ai!!!
por weverton » Qui Jul 08, 2010 17:15
- 2 Respostas
- 8400 Exibições
- Última mensagem por Lucio Carvalho

Qui Jul 08, 2010 19:50
Estatística
-
- me ajudem
por weverton » Qui Out 07, 2010 17:34
- 1 Respostas
- 1655 Exibições
- Última mensagem por MarceloFantini

Qui Out 07, 2010 18:07
Geometria Analítica
-
- me ajudem
por weverton » Seg Nov 08, 2010 16:11
- 7 Respostas
- 3931 Exibições
- Última mensagem por MarceloFantini

Qua Nov 10, 2010 01:43
Logaritmos
-
- Me ajudem!
por paulag » Qua Nov 10, 2010 21:30
- 1 Respostas
- 1428 Exibições
- Última mensagem por paulag

Qua Nov 10, 2010 23:12
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.