• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Probabilidade difícil

Probabilidade difícil

Mensagempor joaofonseca » Qua Mar 21, 2012 13:28

Seja um dado não equilibrado, com as faces numeradas de 1 a 6.Sabe-se que todos os números pares tem a mesma probabilidade da sair e que todos os numeros impares também têm a mesma probabilidade de sair.Sabe-se ainda que a probabilidade de sair número primo é de 0,4.


Qual é a probabilidade de sair 1?

Sejam dois acontecimentos:
A-"sair número impar"
B-"sair número primo"

Neste problema não se pode utilizar a regra de Laplace, pois os acontecimentos elementares não são equiprováveis.Contudo, no espaço amostral desta experiência, sair número primo implica sair número impar e vice-versa.Logo deduzi que a P(A) também é igual a 0,4.
É dito que os números impares tem a mesma probabilidade de sair.Ou seja o 1, o 3 e 5.
Logo cada um dos números impares tem \frac{1}{3} de 0,4 de probabilidade de sair.

\frac{1}{3} \cdot \frac{2}{5}=\frac{2}{15}

Contudo a solução do livro é \frac{1}{15}.Quem está errado?
Obrigado pela ajuda
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Probabilidade difícil

Mensagempor joaofonseca » Sex Mar 23, 2012 18:19

Após alguma pesquisa na net.Encontrei uma solução para o problema.

Primeiro o erro do meu racíocino anterior:

O nº 1 não é número primo, mas o 2 é.Logo existem 3 números pares (dos quais um deles é primo) e 3 números impares(dos quais 2 são primos).
Pela axiomática sabemos que a P(\Omega)=P(a_{1})+P(a_{2})+P(a_{3})+...+P(a_{n}). em que \Omega representa o universo e a_{n} os vários acontecimentos que compõem o universo.
Existem 3 acontecimentos que têm a mesma probabilidade(nºs impares) e outros 3 acontecimentos também com a mesma probabilidade(nºs pares).Assim:

3a+3b=1, em que a é a probabilidade de ser par e b a probabilidade de ser impar.

Sabemos que a probabilidade de ser nº primo é de 0,4.Logo:

a+2b=0,4

Agora basta montar um sistema, resolve-lo e achar o valor de b para saber a probabilidade de sair o 1 (impar).
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}