• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[DESAFIO DE PROBABILIDADE 2] Energia de uma feixe

[DESAFIO DE PROBABILIDADE 2] Energia de uma feixe

Mensagempor PTuga » Sáb Out 26, 2013 18:16

Num acelerador de partículas os feixes de raios X ou electrões têm como
alvo o tumor e a sua energia é controlada por forma a que o alcance
seja o suficiente para apenas atingir as células cancerosas. A energia do feixe varia entre 200 e 210 MeV. A função de distribuição associada à energia do feixe é a seguinte:

{ 0 x<200
F(x): { 0.1x-20 200<=x<=210
{ 1 x>210

Determine o seguinte:

(a) P(X < 209)

(b) P(200 < X < 208)

(c) P(X > 209)

(d) Determine a função densidade de probabilidade

(e) Determine a média e o desvio-padrão do feixe de energia.
PTuga
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Out 12, 2013 16:49
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Engenharia Electrotecnica
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}