• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[probabildade] lançamento de dados

[probabildade] lançamento de dados

Mensagempor santtus » Sáb Fev 16, 2013 03:38

Dois dados iguais são lançados simultaneamente. A probabilidade de que a soma dos números obtidos seja
maior que 5 e menor que 9 é:





bem eu comecei a fazer da seguinte maneira:


o intervalo é (6,7,8) logo conclui que para ¨6 é 5/36 para 7 é 6/36 e 8 é 5/36 somei tudo e deu 16/36 porem nao e o resultado.

me ajudem onde errei

obrigado a todos
santtus
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Fev 08, 2013 02:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor Rafael16 » Sáb Fev 16, 2013 16:33

Você esqueceu de simplificar.

\frac{5}{36} + \frac{6}{36} + \frac{5}{36} = \frac{16}{36} = \frac{4}{9}
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor santtus » Sáb Fev 16, 2013 17:33

Sim, eu simplifiquei e msm assim nao e o resultado. nao sei entao
santtus
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Fev 08, 2013 02:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor Rafael16 » Sáb Fev 16, 2013 18:12

Qual é o resultado?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor santtus » Dom Fev 17, 2013 03:17

R: 2/7
santtus
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Fev 08, 2013 02:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor Rafael16 » Dom Fev 17, 2013 15:26

O gabarito esta errado.
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: [probabildade] lançamento de dados

Mensagempor DanielFerreira » Dom Fev 17, 2013 17:39

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)

Então,

\\ \frac{\cancel{16}^4}{\cancel{36}^9} = \\\\\\ \frac{4}{9}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}