por brunadultra » Qua Jan 23, 2013 22:05
Olá, alguém poderia ajudar?
Eu encontrei que a possibilidade dos fatos ocorrerem em anos consecutivos seria

e a probabilidade de os roubos ocorrerem em endereços diferentes seria

. Mas não dá o resultado correto depois da multiplicação das probabilidades.
Questão: A comparação dos índices de criminalidade, nos últimos três anos, entre duas Áreas
Integradas de Segurança Pública (AISP) da capital – que incluem nove bairros, entre eles
o Costa Azul e a Pituba – aponta para uma cobertura policial militar desigual e abaixo do
que é recomendado pela Organização das Nações Unidas (ONU). [...] (ÁREA, 2012,
p. A 4).
Considerando-se os dados expostos no infográfico, referentes ao número de veículos roubados a
cada ano, e que uma pessoa que morava no Costa Azul se mudou para a Pituba e teve dois carros
roubados na chegada em casa, no período de 2009 a 2011, então a probabilidade desse fato ter
ocorrido em anos consecutivos e cada roubo em um endereço diferente é de, aproximadamente:
RESP: 22%
-
brunadultra
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Nov 07, 2012 23:01
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Julliana_Ferrari » Qua Mar 02, 2016 01:18
BOA QUESTÃO!
TAMBÉM TIVE DÚVIDAS SOBRE ELA.
Editado pela última vez por
Julliana_Ferrari em Qua Mar 02, 2016 01:34, em um total de 1 vez.
-
Julliana_Ferrari
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Mar 02, 2016 01:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Julliana_Ferrari » Qua Mar 02, 2016 01:32
Huuuuum! Ok, já consegui chegar ao resultado.
1) Para ocorrer em anos consecutivos: 3 POSSIBILIDADES.
(2009, 2010)--->QUERO
(2009, 2011)
(2010, 2011)--->QUERO
P1 = 2/3
2) Para ocorrer em endereços diferentes: 3 POSSIBILIDADES.
ASSALTO 1, ASSALTO 2
(End. A, End. B) --->QUERO
(End. A, End. A)
(End. B, End. B)
P2 = 1/3
RESPOSTA: P1 "E" P2 (MULTIPLICA).
P1 X P2 = 2/3 X 1/3 ~ 0,22 ~ 22%
ESPERO QUE TENHA AJUDADO.
-
Julliana_Ferrari
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qua Mar 02, 2016 01:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Probabilidade
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [POLINÔMIOS] Questão UNEB 2013
por brunadultra » Qua Jan 23, 2013 13:58
- 4 Respostas
- 4699 Exibições
- Última mensagem por young_jedi

Sáb Set 07, 2013 19:04
Polinômios
-
- [TRIGONOMETRIA] Questão UNEB 2013
por brunadultra » Qua Jan 23, 2013 15:51
- 5 Respostas
- 10503 Exibições
- Última mensagem por zenildo

Qua Dez 13, 2017 17:28
Trigonometria
-
- [Função] Questão UNEB 2013
por brunadultra » Qua Jan 23, 2013 16:15
- 1 Respostas
- 9140 Exibições
- Última mensagem por young_jedi

Qui Jan 24, 2013 21:54
Funções
-
- [LOGARITMO] QUESTÃO UNEB 2013
por brunadultra » Qua Jan 23, 2013 18:17
- 2 Respostas
- 6200 Exibições
- Última mensagem por brunadultra

Qua Jan 23, 2013 20:47
Logaritmos
-
- QUESTÃO de Progressão Aritimética UNEB 2013
por jessicaaangels » Sáb Set 28, 2013 11:59
- 2 Respostas
- 4882 Exibições
- Última mensagem por Thiago 86

Sex Out 11, 2013 12:27
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.