• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade]Função de variável aleatória bidimensional.

[Probabilidade]Função de variável aleatória bidimensional.

Mensagempor Bravim » Dom Out 06, 2013 16:57

O problema é o seguinte:Sejam X e Y duas variáveis aleatórias independentes unidimensionais, cada uma com distribuição uiforme sobre o intervalo [0.1]. Sejam U=X+Y e V=X-Y.
a)provar que U tem uma função densidade contínua f(u) dado por:
f(u)= u se 0<u<1,
2-u se 1<u<2
0 para os restantes valores de u.

b) Definir, de modo análogo uma densidade contínua f(v) para V.
c) Verificar se U e V são ou não independentes.
Bem na letra a eu fiz quase tudo, mas não consigo saber como lhufas ele separou os valor de f(u), para mim deveria ser só um valor entre (0,2).
Fica assim:
f(y)=f(x)=1, para x,y em [0,1]; essas são as densidades probabilisticas de Y e X
O jacobiano fica 1/2
e como ele disse que as funções são independentes f(x,y)=f(x)*f(y). Daí um integrei tudo e cheguei a:
f(u)=\int_{0}^{u}f(x,u-x)dx
.daí achei que f(x) é igual a u para u em [0,2]
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)