• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Teorema de Bayes

Teorema de Bayes

Mensagempor probestat » Sáb Dez 01, 2012 18:15

Pessoal ainda não consegui entender como fazer isso? Será que alguém pode me ajudar no raciocínio desse exercício?

Sabe-se que de cada 100 maçãs colhidas, 23 chegam danificadas ao mercado atacadista. Certo comerciante pegou uma amostra aleatória de 10 maçãs de um lote que acaba de receber. Qual a probabilidade de:

encontrar 5 maçãs danificadas??

encontrar 3 maçãs danificadas??

não encontrar maçãs danificadas??

que todas estejam danificadas??

Obrigado!!
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor probestat » Dom Dez 02, 2012 00:30

Pessoal alguem pode me auxiliar???
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor probestat » Dom Dez 02, 2012 16:02

Cheguei nesse numeros. mais não estão batendo...

Essa esta realmente muito complicada


encontrar 5 maçãs danificadas; 24,61%
encontrar 3 maçãs danificadas; 11,72%
não encontrar maçãs danificadas; 0,10%
probestat
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Dez 01, 2012 16:40
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: Teorema de Bayes

Mensagempor Fabio Wanderley » Ter Dez 18, 2012 00:47

Boa noite,

Ainda estou cursando Probabilidade 1. Vou tentar ajudar.

Pela leitura do problema, creio que podemos resolvê-lo usando uma distribuição hipergeométrica. Você estudou variáveis aleatórias?

Fiz essa aqui:
encontrar 5 maçãs danificadas??


Meu resultado foi 0,0384

Condiz com o seu gabarito?

Aguardo sua resposta.
Avatar do usuário
Fabio Wanderley
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Sex Mar 23, 2012 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.