• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Probabilidade] - Cap 10 Bussab Exercício 7

[Probabilidade] - Cap 10 Bussab Exercício 7

Mensagempor Garr » Sex Out 05, 2012 13:55

No exercício abaixo, consegui interpretar e resolver o item "a", porém não sei nem como começar o segundo. A dificuldade é primeiro entender o que o exercício pede e depois calcular.
“7. Uma v.a X tem distribuição normal, com média 100 e desvio padrão 10.
(a) Qual a P (90 < X < 100)?
(b) Se \bar{X} for a média de uma amostra de 16 elementos retirados dessa população, calcule P (90 < X < 100).
(c) (...)”

a) P(90 < X < 110) = P( x < 110) - p (x < 90) = 0,84134 - 0,15866 = 0,68268
b) ???
Garr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 13, 2010 22:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Probabilidade] - Cap 10 Bussab Exercício 7

Mensagempor Neperiano » Ter Out 09, 2012 09:58

Olá

A questão diz que uma variável a de x tem uma distribuição normal.

Na a pede a probabilidade de x ficar entre 90 e 100.

Na b, pede para ti calcular a probabilidade de x ser 90 a 100, só que agora usando a média de uma amostra de 16 elemenros, retiradas desta população.

Tente fazer, aplique na equação da distribuição normal.

Att
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Probabilidade] - Cap 10 Bussab Exercício 7

Mensagempor Garr » Ter Out 09, 2012 11:10

Obrigado pelo esclarecimento.
Fazendo então
\sigma\bar{x} = \sigma{x}/\sqrt{n} ;
\sigma\bar{x} = 10/\sqrt{16} = 2,5

Então é calcular P(90<\bar{x}<110) para N~(100,2,5)
P(90<\bar{x}<110) = 1

Dúvida: no primeiro post eu copiei errado no trecho: "(a) Qual a P (90 < X < 100)?". Na verdade é "(a) Qual a P (90 < X < 110)?". Não consegui editar o post. Eu que não to sabendo ou o fórum não permite?
Garr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mai 13, 2010 22:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: [Probabilidade] - Cap 10 Bussab Exercício 7

Mensagempor Neperiano » Ter Out 09, 2012 11:50

Olá

Tem um tempo minimo para editar, depois deste tempo acredito que não de mais, e só os moderadores podem editar depois deste tempo.

Att
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}