• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definição Probabilidades-Exercicio

Definição Probabilidades-Exercicio

Mensagempor joaofonseca » Qui Abr 12, 2012 19:46

Lança-se um dado cubico, perfeito, numerado de 1 a 6, até obter o número 6.Qual a probabilidade de ter de lançar o dado pelo menos duas vezes para obter o númeo 6 uma vez?


Este exercicio partiu-me a cabeça toda! Pois, foge aos processos/técnicas normais à resolução de problemas de probabilidades.Até que fui ver a solução.Mas a solução não explicava o raciocinio.Então tive novamente de puxar pela cabeça para ver como chegar lá. A solução é 5/6.

Então pensei. \frac{5}{6} é a probabilidade do acontecimento contrário ao acontecimento de probabilidade \frac{1}{6}.
No meio do texto introdutório tive de encontrar qual era o acontecimento para o qual era pedido a probabilidade.
Seja A o acontecimento " lançar o dado pelo menos duas vezes". \bar{A} será "lançar o dado exatamente uma vez".Ora a probabilidade de \bar{A} é \frac{1}{6} pois cada face do dado tem igual probabilidade de sair.
Logo está explicado o raciocinio por de trás do resultado. Sabem de outra forma para resolver este problema?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Definição Probabilidades-Exercicio

Mensagempor fraol » Qui Abr 12, 2012 20:40

Meu desenvolvimento seria o seguinte:

Seja o evento A = não obter 6 no lançamento do dado => P(A) = \frac{5}{6}.

Seja o evento B = obter 6 no lançamento do dado => P(B) = \frac{1}{6}.

Pelo enunciado pretende-se saber qual é a probabilidade de ter ocorrido o evento A no primeiro lançamento uma vez que (dado que) ocorreu o evento B no segundo lançamento.

Isso é probabilidade condicionada: P(A|B) = \frac{P(A \bigcap B)}{P(B)}

Então: P(A|B) = \frac{\frac{5}{6}.\frac{1}{6}}{\frac{1}{6}} = \frac{5}{6}.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.