• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinação de Numeros]Combinação até chegar em outro

[Combinação de Numeros]Combinação até chegar em outro

Mensagempor moacirrf » Dom Set 30, 2012 15:51

Por exemplo tenho o numero 6.E os Numeros 1,2
Preciso saber quantas combinações possíveis entre 1, 2 até chegar em 6.
Com o numero 6 temos:
1+1+1+1+1+1=6
1+1+1+1+2=6
1+1+2+2=6
2+2+2=6
Neste caso tenho 4 combinações possíveis...
Assim é facil, mas quando possue numeros maiores e mais numeros para combinar a coisa complica.Por exemplo 300 com combinações de ( 1,2,10,100,50)

Estou tentando com Analise Combinatoria e Mtrizes(Sistemas Lineares)....

Alguem poderia apenas me dar uma dica...

Obrigado
moacirrf
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 30, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Área/Curso: Tecnico em Informatica
Andamento: formado

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}