• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória] Combinações Completas

[Análise Combinatória] Combinações Completas

Mensagempor Pessoa Estranha » Seg Mai 04, 2015 00:00

Olá, preciso de ajuda para resolver a seguinte questão:

Quantas são as soluções inteiras positivas de x + y + z < 10?

Minha solução:

Como queremos soluções inteiras positivas, então as variáveis devem receber valores inteiros estritamente maiores do que zero. Logo, devem ser maiores ou iguais a 1. Assim, por exemplo, x ? 1 => x – 1 ? 0. Portanto, a inequação dada pode ser substituída por: a + b + c < 7, onde a = x – 1, b = y – 1, c = z – 1 são variáveis não-negativas. Como ainda é uma desigualdade, basta colocarmos uma variável de folga f. Assim, a + b + c + f = 7. Agora, podemos seguir a mesma ideia do esquema de "traço-bola". Vamos permutar 3 “traços” e 7 “bolas”. Logo, temos (10!)/((3!)(7!)) = 120 soluções.

A resposta certa é 84.

Por que a minha solução está errada? Onde errei?

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor alexandre_de_melo » Qua Jul 29, 2015 11:57

Se x+y+z<10 então x+y+z <= 9 ,e logo,
substituindo, x-1=a, y-1=b, z-1=c, teremos
a+b+c <=6 ,e logo,
usando f como folga, teremos
a+b+c+f=6 e logo
\left( ^9 _6 \right)=84

Linda resolução, né!??!?!
Grande abraço pra ti!!!! Fuiiiiiiiiii!!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 16:47

o numero das soluçoes da inequaçao
x+y+z\prec 10
seja w,tal que:
x+y+z+w=10...{c}_{(10+4-1,4)}=13!/(4!.9!)=...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 17:14

correçao:
as combinaçoes completas(combinaçao com elementos distintos ou nao,com repetiçoes)
{x}_{1}+...+{x}_{n}=p\Rightarrow {c}_{(n+p-1,p)}=(n+p-1)!/(p!.(n-1)!),demonstrarei tal fato mais a frente...em nosso caso,errei o dados,logo:
x+y+z+w=10\Rightarrow {c}_{(4+10-1,10)}=13!/(10!.3!)=(13*12*11)/6=286
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Análise Combinatória] Combinações Completas

Mensagempor adauto martins » Sex Set 20, 2019 17:39

mais uma correçao:
o pedido do problema sao as soluçoes positivas.as que calculei sao as soluçoes inteiras e nao-negativas,caso que considera as soluçoes contendo "zeros" nas p-uplas.nesse caso as soluçoes sao dadas por:
{c}_{(n-1),(p-1)}=(n-1)!/((p-1)!.(n-p)!) \Rightarrow 

{c}_{(10-1,4}=(10-1)!/((4-1)!.(10-4)!)=9!/(3!.6!)=9*8*7/6=84
...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.


cron