• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise Combinatória (Principio da Indução Matemática)

Análise Combinatória (Principio da Indução Matemática)

Mensagempor Dalia96 » Ter Abr 21, 2015 13:39

Poderia alguém me dizer como chegar na fórmula da soma:
Sn=1^2 + 2^2 + ... + n^2 = (n(n+1)(2n+1))/6

Agradeço!
Dalia96
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Abr 21, 2015 13:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática (Bacharelado)
Andamento: cursando

Re: Análise Combinatória (Principio da Indução Matemática)

Mensagempor alexandre_de_melo » Qua Jul 29, 2015 22:11

PRIMEIRA FORMA

(1+1)^3=1^3+3*1^2+3*1+1 \Rightarrow (1+1)^3-1^3=3*1^2+3*1+1

(2+1)^3=2^3+3*2^2+3*1+1 \Rightarrow (2+1)^3-2^3=3*2^2+3*2+1

.
.
.


(n+1)^3=n^3+3*n^2+3*n+1 \Rightarrow (n+1)^3-n^3=3*n^2+3*n+1

teremos então:
2^3-1^3=3*1^2+3*1+1
3^3-2^3=3*2^2+3*2+1
.
.
.
(n+1)^3-n^3=3*n^2+3*n+1

Somando o primeiro membro das equações acima, obteremos (n+1)^3-1^3.
Somando o segundo membro, obteremos \sum_{i=1}^{n}(3*i^2+3*i+1)= 3*\sum_{i=1}^{n}i^2+3\sum_{i=1}^{n}i+n
Igualando os dois membros, teremos :
(n+1)^3-1^3= 3*\sum_{i=1}^{n}i^2+3\sum_{i=1}^{n}i+n, e logo,
(n+1)^3-1^3-3\sum_{i=1}^{n}i-n= 3*\sum_{i=1}^{n}i^2. Desenvolvendo,
(n+1)^3-1-3*\frac{(n+1)*n}{2}-n= 3*\sum_{i=1}^{n}i^2.
Desenvolvendo o primeiro membro, simplificando e dividindo por 3, obteremos \sum_{i=1}^{n}i^2

Ufffffffffffffaaaaaaaaaaaaaaaaaaaaa!!!!!!

SEGUNDA MANEIRA:

\sum_{i=1}^{n}i^2=\sum_{i=1}^{n}(i^2+i-i)
=\sum_{i=1}^{n}(i^2+i)+\sum_{i=1}^{n}(-i)=\sum_{i=1}^{n}(i^2+i)-\sum_{i=1}^{n}i
=\sum_{i=1}^{n}[i(i+1)]-\sum_{i=1}^{n}i
=\sum_{i=1}^{n}\left(^{i+1}_2\right)-\sum_{i=1}^{n}i
=\sum_{i=1}^{n}\left(^{i+1}_2\right)- \frac{(n+1)n}{2}
Usando o teorema de colunas(triângulo de Pascal), temos:
=\left(^{n+2} _3\right)- \frac{(n+1)n}{2}
E agora, é só desenvolver e simplificar essa contarada!!!! kkkkkk
Acho que já ajudei, né?!?!?!? Desculpe qualquer coisa e grande abraço!!! Fuiiiiii!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59