"Um homem possui oito pares de meias todos distintos. De quantas formas ele pode selecionar duas meias, sem que elas sejam do mesmo par ?"
Minha resolução: Ao total, o homem tem 16 meias, mas estamos interessados em calcular o número de conjuntos possíveis de duas meias distintas. Logo, usufruindo de uma meia de cada par, isto é, 8 meias diferentes, e tomando 2 a 2, teremos C8,2 = 28 formas possíveis.
Está errado. A resposta certa é 112.
Alguém pode ajudar, por favor ?!
Obrigada!


![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)