• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolv.combinatoria

exerc.resolv.combinatoria

Mensagempor adauto martins » Seg Ago 19, 2019 15:07

(este-escola tecnica do exercito-1953)
em um congresso ha 102 representes do partido A e 81 representantes do partido B.
para uma determinada sessao,foram convocados 99 elementos do partido A e 79 do partido B.
de quantas maneiras poderia ter sido efetuada tal convocaçao?
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Seg Ago 19, 2019 15:14

soluçao:
aqui trata-se de uma comissao de pessoas,logo uma combinaçao,pois
qquer ordem de colocaçao nao mudara o resultado.
do partido A, teremos dos 102 membros,convocarao 99,logo:
{c}_{102,99}=102!/(99!.(102-99)!)
do partido B,teremos:
{c}_{81,79}=81!/(79!.(81-79)!)
como os partidos A e B, nao tem elementos comuns,logo
usaremos o princ. aditivo da contagem,entao:
{{c}_{}}_{102,99}+ {c}_{81,79}=...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor DanielFerreira » Qui Set 05, 2019 22:46

Adauto, parece-me que devemos multiplicar \mathsf{C_{102}^{99}} por \mathsf{C_{81}^{79}}, e, não somar!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1704
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Dom Set 08, 2019 11:40

meu caro daniel,
e a soma mesmo,pois se usarmos o principio de inclusao-exclusao da contagem,a saber:
n(A \cup B)=n(A)+n(B)-n(A\cap B)=n(A)+n(B),pois o exercicio nao diz de elementos comuns
entre os partidos...confira...obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Dom Set 08, 2019 12:09

meu caro daniel,revendo o problema e a situalçao vc esta correto mesmo.
pois formar-se-ia comissoes para julgar uma emenda,e...etc...
entao sera votada tais recursos por ambos partidos,logo e multiplicar mesmo...
obrigado pela correçao...adauto...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Seg Set 09, 2019 15:55

meu caro daniel,
é a soma mesmo,como fiz na primeira postagem e no argumento
que usei do principio de inclusao-exclusao da contagem...no mais obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor DanielFerreira » Qui Set 12, 2019 22:57

Adauto, veja se concorda:

Afim de reduzir o quantitativo, e, por conseguinte, poder contá-los um a um, pensei no problema (adaptado) abaixo:

Em um congresso há 3 representes do partido X e 2 representantes do partido Y. Para uma determinada sessão,foram convocados 2 elementos do partido X e 1 do partido Y. De quantas maneiras poderia ter sido formada essa convocação?


Sejam A, B e C os representantes do partido X. Considere também D e E representantes do partido Y.

De acordo com seu raciocínio, Adauto, a resposta seria:

\displaystyle C_{3, 2} + C_{2, 1} = \frac{3 \cdot 2!}{2!1!} + \frac{2 \cdot 1}{1!1!} = 3 + 2 = \boxed{{5}}


Todavia, veremos que isto não é verdade, pois, descrevendo uma a uma, tiramos que a resposta é 6! Segue,

ABD
ABE

ACD
ACE

BCD
BCE

Em símbolos,

\\ \displaystyle \mathbf{C_{3, 2} \cdot C_{2, 1} =} \\\\ \mathbf{3 \cdot 2 =} \\\\ \boxed{\boxed{\mathbf{6}}}

Isto posto, não é difícil notar que devemos multiplicar! Salvo queiramos deixar de contar alguns casos!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1704
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Sex Set 13, 2019 10:07

pois é meu caro daniel,
aqui vc esta considerando a possibilidade de comissoes mistas,com integrantes de ambos partidos.mas o problema
nao enfatiza isso...o problema diz de quantas maneiras,possibilidades pode-se fazer tais comissoes,sem dizer de comissoes
que possam haver politicos-comuns,logo nao teremos uma intersecçao nao-nula...se o problema pedisse quantas comissoes poderiam fazer com tais partidos,ai sim,o produto...acho que nao teremos um consenso,fica ao leitor-estudante considerar qual deve ser a resposta correta...no mais é isso...obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor DanielFerreira » Sex Set 13, 2019 11:46

Ok Adauto, tens razão, não chegaremos num consenso. Interpretamos a questão de maneira distinta!!

Agradeço-te pela boa vontade em explicar seu entendimento na questão!

Até a próxima!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1704
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: exerc.resolv.combinatoria

Mensagempor adauto martins » Sex Set 13, 2019 13:51

ok,caro daniel,
desejo-lhe bons estudo e boas pesquisas,se assim vc estiver direcionando sua matematica...
obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 995
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Análise Combinatória

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.


cron