• Anúncio Global
    Respostas
    Exibições
    Última mensagem

ANAGRAMAS CONFUSOS

ANAGRAMAS CONFUSOS

Mensagempor Matpas » Sex Set 04, 2015 13:54

Amigos, como seria resolvida esta questão de Permutação?

SEJAM X O NÚMERO DE ANAGRAMAS DE UMA PALAVRA SEM LETRAS REPETIDAS E Y O NÚMERO DE ANAGRAMAS DE UMA OUTRA PALAVRA QUE TAMBÉM NÃO APRESENTA LETRAS REPETIDAS. SE X+Y=744, ENTÃO QUAL É A SOMA DO NÚMERO DE LETRAS DESSAS DUAS PALAVRAS?
Matpas
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Ter Ago 25, 2015 15:48
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: ANAGRAMAS CONFUSOS

Mensagempor DanielFerreira » Dom Out 18, 2015 09:54

Olá! Bom dia.

Sabemos que a quantidade de anagramas de uma palavra sem letras repetidas é dada por n!, onde n é a quantidade de letras da palavra.

Ora, temos então que: x! + y! = 744.

O que devemos fazer é encontrar dois números cuja soma seja 744, veja:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
...

Como pode notar, 24 + 720 = 744. Daí,

\\ x! + y! = 744 \\ 4! + 6! = 744 \\ \boxed{x = 4} \\ \boxed{y = 6}

Logo, \boxed{\boxed{x + y = 10}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59