por Matpas » Sex Set 04, 2015 13:54
Amigos, como seria resolvida esta questão de Permutação?
SEJAM X O NÚMERO DE ANAGRAMAS DE UMA PALAVRA SEM LETRAS REPETIDAS E Y O NÚMERO DE ANAGRAMAS DE UMA OUTRA PALAVRA QUE TAMBÉM NÃO APRESENTA LETRAS REPETIDAS. SE X+Y=744, ENTÃO QUAL É A SOMA DO NÚMERO DE LETRAS DESSAS DUAS PALAVRAS?
-
Matpas
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Ter Ago 25, 2015 15:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Dom Out 18, 2015 09:54
Olá! Bom dia.
Sabemos que a quantidade de anagramas de uma palavra sem letras repetidas é dada por

, onde

é a quantidade de letras da palavra.
Ora, temos então que:

.
O que devemos fazer é encontrar dois números cuja soma seja 744, veja:
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
...
Como pode notar,

. Daí,

Logo,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.