• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ta difícil essa analise

Ta difícil essa analise

Mensagempor mat_MED » Sáb Jun 06, 2015 11:09

Bom dia! Segue exercício:
Em uma estante há 6 livros de diferentes de matemática, 5 livros diferentes de física e 4 livros diferentes de química. Assinale a alternativa que indique de quantas maneiras diferentes é possível escolher 4 livros nessa estante de modo que haja pelo menos 1 livro de cada uma das três matérias.
a)240
b)300
c)540
d)720
e)800
mat_MED
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jun 06, 2015 11:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ta difícil essa analise

Mensagempor DanielFerreira » Dom Jun 07, 2015 10:33

TALVEZ, o gabarito esteja errado!!

Fiz assim:

M M F Q => um livro de cada disciplina MAIS um de matemática;

M F F Q => um livro de cada disciplina MAIS um de física;

M F Q Q => um livro de cada disciplina MAIS um de química;

M M M F => (...) faltou o de química; disso podemos concluir que não podemos ter três livros de uma disciplina. Com isso, vamos às contas!!


Encontremos a quantidade de escolhas possíveis no formato MMFQ:

- matemática => C_{6, 2};
- física ======> C_{5, 1};
- química ====> C_{4, 1}.

Daí, o total escolhas nesse formato é dado por: C_{6, 2} \cdot C_{5, 1} \cdot C_{4, 1} = 300


Encontremos a quantidade de escolhas possíveis no formato MFFQ:

- matemática => C_{6, 1};
- física ======> C_{5, 2};
- química ====> C_{4, 1}.

Daí, o total escolhas nesse formato é dado por: C_{6, 1} \cdot C_{5, 2} \cdot C_{4, 1} = 240


Tente concluir! para isso será necessário encontrar a quantidade de escolhas para o formato MFQQ, depois basta somá-lo aos valores encontrados (300 e 240).

A propósito, procure ser mais objetivo no título de post.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ta difícil essa analise

Mensagempor Nina Luizet » Dom Jun 07, 2015 11:05

Olá, então daria 720 possibilidades?
Nina Luizet
Nina Luizet
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 16, 2015 12:39
Localização: Natal , RN , Brasil
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Ta difícil essa analise

Mensagempor DanielFerreira » Dom Jun 07, 2015 12:18

De acordo com o raciocínio que apresentei, sim!

A meu ver, o gabarito está incorreto.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Ta difícil essa analise

Mensagempor mat_MED » Dom Jun 07, 2015 12:22

Essa resposta eu já havia encontrado (720).
mat_MED
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Jun 06, 2015 11:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D