por zenildo » Qui Mai 21, 2015 18:10
Paulo possui 709 livros e identificou cada um destes livros com um código formado por três letras do nosso alfabeto, seguindo a “ordem alfabética” assim definida: AAA, AAB,..., AAZ, ABA, ABB,..., ABZ, ACA,... Então, o primeiro livro foi identificado com AAA, o segundo com AAB,... Nestas condições, considerando o alfabeto com 26 letras, o código associado ao último livro foi:
A) BAG. Eu queria que alguém comentasse esse problema, pois eu não sei se a resposta que ache está certa, letra A.
B) BAU.
C) BBC.
D) BBG.
E) BAB.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
por DanielFerreira » Sáb Mai 23, 2015 14:45
Fixemos as duas letras iniciais, ou seja, AA; a terceira poderá ser {A, B, C,..., Z}. Portanto, 26 possibilidades!
Fixemos as duas letras iniciais... AB; a terceira poderá ser ocupada por 26 letras.
Com isso, temos que ABZ ocupa 52ª posição.
Entendido o raciocínio, podemos galgar voos mais alto; como, por exemplo, fixar apenas a letra inicial, veja:
- fixando a primeira letra, que é A, então: para a segunda posição temos 26 possibilidades e para a terceira também. Portanto, começando pela letra A temos um total de 676 (26 . 26) códigos; logo, o código AZZ (que é o último iniciando por A) ocupa a 676ª posição.
Passemos para o código cujo o início é em BA, para a terceira posição temos 26 possibilidades; portanto, o código BAZ ocupa a posição 702 (676 + 26).
Ora, ficou fácil notar que precisamos de mais 7 códigos para alcançar os 709 livros. Daí,
703ª => BBA
704ª => BBB
705ª => BBC
706ª =>BBD
707ª => BBE
708ª => BBF
709ª => BBG
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por zenildo » Sáb Mai 23, 2015 18:46
Muito obrigado, com o tempo agente pega o jeito de fazer a análise combinatória.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Principio fundamental da contagem (I)
por my2009 » Ter Mai 10, 2011 19:51
- 1 Respostas
- 1895 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:38
Estatística
-
- Principio fundamental da contagem (II)
por my2009 » Ter Mai 10, 2011 19:54
- 1 Respostas
- 1817 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:30
Estatística
-
- Principio fundamental de contagem (III)
por my2009 » Ter Mai 10, 2011 19:58
- 3 Respostas
- 2156 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 21:35
Estatística
-
- principio fundamental da contagem
por vinicius reis » Dom Set 25, 2011 17:08
- 1 Respostas
- 1523 Exibições
- Última mensagem por Neperiano

Dom Set 25, 2011 19:52
Estatística
-
- Princípio Fundamental de Contagem
por gabryelc » Qua Mar 20, 2013 11:03
- 1 Respostas
- 2205 Exibições
- Última mensagem por marinalcd

Qua Mar 20, 2013 18:25
Análise Combinatória
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.