• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Analise Combinatoria (Arranjo)

Analise Combinatoria (Arranjo)

Mensagempor Souo » Sáb Abr 18, 2015 16:37

Com os algarismos impares pode-se formar n numero maiores de 200 e que tenham apenas 3 algarismo distintos. O valor de n é:

A) 10
B) 48
C) 60
D) 72
E) 96



No gabarito esta como letra B, mas nao consegui chegar no resultado.
Souo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Abr 14, 2015 20:54
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Analise Combinatoria (Arranjo)

Mensagempor DanielFerreira » Qua Abr 29, 2015 20:32

Souo escreveu:Com os algarismos impares pode-se formar n numero maiores de 200 e que tenham apenas 3 algarismo distintos. O valor de n é:

A) 10
B) 48
C) 60
D) 72
E) 96



No gabarito esta como letra B, mas nao consegui chegar no resultado.

Olá Souo, boa noite!

De acordo com o enunciado, devemos iniciar a contagem a partir do 300, pois 2 é par;

- fixemos o 3 na unidade de centena, isto é, apenas uma possibilidade; para a unidade de dezena temos {1, 5, 7 e 9} como possibilidades; para a unidade temos 3 (4 - 1) possibilidades. Com efeito, iniciando com o algarismo 3 formamos 12 números ímpares com dígitos distintos. O seja, 1 \cdot 4 \cdot 3.

O raciocínio é análogo quando o número começa com 5, 7 e 9.

Daí,

\\ 12 + 12 + 12 + 12 = \\\\ \boxed{48}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}