por Souo » Sáb Abr 18, 2015 16:37
Com os algarismos impares pode-se formar n numero maiores de 200 e que tenham apenas 3 algarismo distintos. O valor de n é:
A) 10
B) 48
C) 60
D) 72
E) 96
No gabarito esta como letra B, mas nao consegui chegar no resultado.
-
Souo
- Usuário Dedicado

-
- Mensagens: 39
- Registrado em: Ter Abr 14, 2015 20:54
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Qua Abr 29, 2015 20:32
Souo escreveu:Com os algarismos impares pode-se formar n numero maiores de 200 e que tenham apenas 3 algarismo distintos. O valor de n é:
A) 10
B) 48
C) 60
D) 72
E) 96
No gabarito esta como letra B, mas nao consegui chegar no resultado.
Olá
Souo, boa noite!
De acordo com o enunciado, devemos iniciar a contagem a partir do 300, pois 2 é par;
- fixemos o 3 na unidade de centena, isto é, apenas uma possibilidade; para a unidade de dezena temos {1, 5, 7 e 9} como possibilidades; para a unidade temos 3 (4 - 1) possibilidades. Com efeito, iniciando com o algarismo 3 formamos 12 números ímpares com dígitos distintos. O seja,

.
O raciocínio é análogo quando o número começa com 5, 7 e 9.
Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Analise combinatoria ( Arranjo)
por DanielRJ » Ter Ago 24, 2010 21:07
- 5 Respostas
- 8230 Exibições
- Última mensagem por biaamds

Seg Mar 30, 2015 22:08
Estatística
-
- Análise Combinatória (Arranjo)
por Anderson Alves » Dom Mar 11, 2012 12:50
- 8 Respostas
- 4140 Exibições
- Última mensagem por Anderson Alves

Ter Mar 13, 2012 14:12
Estatística
-
- Análise Combinatória (Arranjo)
por Anderson Alves » Dom Mar 11, 2012 22:35
- 1 Respostas
- 1233 Exibições
- Última mensagem por fraol

Dom Mar 11, 2012 23:13
Estatística
-
- Análise Combinatória (Arranjo)
por Anderson Alves » Qui Mar 15, 2012 22:38
- 1 Respostas
- 1297 Exibições
- Última mensagem por fraol

Qui Mar 15, 2012 23:13
Estatística
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 15952 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.