por andersonmfdp » Sex Mai 23, 2014 09:18
Ler o texto e fazer as atividades a seguir:
Uma loja virtual de roupas esportivas disponibiliza em sua página da internet três tipos de produtos, em cinco tamanhos distintos e com algumas estampas Todas os Produtos na Versão Masculina (M) e Feminina (F) :
• Camiseta: tamanhos: PP, P, M, G e GG; estampas: A, B, C e D;
• Bermuda: tamanhos: PP, P, M, G e GG; estampas: A, B e C;
• Boné: tamanhos: P, M e G; cores: A, B e C;
Uma pesquisa feita com os visitantes de uma loja virtual mostrou que eles gostariam que as imagens dos produtos que aparecem na página principal fossem alteradas a cada acesso. Considerem que atualmente aparecem três imagens fixas, sendo uma de cada produto.
Dessa forma, levantar quantas combinações é possível apresentar na
página inicial, mantendo três imagens de produtos da loja. Para isso, define-se que há uma imagem para cada tipo de item disponibilizado, inclusive para tamanho, pois são apresentadas as dimensões do produto para que o cliente tenha uma ideia melhor de sua dimensão.
Logo, a equipe deverá apresentar de quantas formas distintas poderão ocorrer na página principal:
As imagens de três produtos quaisquer da loja virtual;
As imagens de três camisetas da loja virtual;
As imagens de três bermudas da loja virtual;
As imagens de três bonés da loja virtual;
As imagens de três produtos da loja virtual, sendo: uma camiseta, um boné e uma bermuda.
-
andersonmfdp
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Mai 23, 2014 09:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Tecnologia informação
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probablidades-Casos possivéis
por joaofonseca » Seg Jan 30, 2012 18:40
- 1 Respostas
- 1655 Exibições
- Última mensagem por fraol

Seg Jan 30, 2012 20:53
Estatística
-
- Ranking de possíveis combinações
por GiuseppeAlb » Dom Jun 03, 2012 19:39
- 0 Respostas
- 1148 Exibições
- Última mensagem por GiuseppeAlb

Dom Jun 03, 2012 19:39
Estatística
-
- Quantos triângulos são possíveis formar
por alexandre32100 » Qui Set 09, 2010 21:10
- 2 Respostas
- 1891 Exibições
- Última mensagem por Douglasm

Qui Set 09, 2010 23:06
Estatística
-
- [Infinito] Todas as operações possíveis!
por Jhenrique » Sáb Set 08, 2012 14:57
- 3 Respostas
- 4044 Exibições
- Última mensagem por MarceloFantini

Dom Set 09, 2012 17:06
Cálculo: Limites, Derivadas e Integrais
-
- Duvida - Quantas Divisores possíveis tem o numero N= 2 eleva
por rudson01 » Ter Abr 09, 2013 23:24
- 1 Respostas
- 1507 Exibições
- Última mensagem por DanielFerreira

Ter Abr 16, 2013 14:42
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.