por dbarros » Ter Abr 29, 2014 19:04
Em uma clínica trabalham e estão disponíveis 10 médicos e 6 dentistas. Considerando que em um plantão são necessários 4 médicos e 2 dentistas, as equipes distintas que poderão ser formadas com os médicos e dentistas disponíveis são:
A) 3150.
B) 480
C) 225.
D) 52
E) 608
Resposta: Letra "A"
Fonte: FUNCAB / 2012 / Prefeitura de armação de Buzios / Analista de Sistemas /
-
dbarros
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 29, 2014 18:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão Recursos Humanos
- Andamento: cursando
por DanielFerreira » Qua Abr 30, 2014 21:41
Olá
dbarros,
seja bem-vindo(a)!
O problema envolve combinação! Veja o porquê:
M: médico
D: dentista
M_1, M_2, M_3, M_4, D_1 e D_2 = M_3, M_2, M_1, M_4, D_2 e D_1
Repare que os mesmos profissionais dispostos em posições diferentes, não implica numa equipe distinta.
Daí,

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por dbarros » Qua Abr 30, 2014 23:27
danjr5 escreveu:Olá
dbarros,
seja bem-vindo(a)!
O problema envolve combinação! Veja o porquê:
M: médico
D: dentista
M_1, M_2, M_3, M_4, D_1 e D_2 = M_3, M_2, M_1, M_4, D_2 e D_1
Repare que os mesmos profissionais dispostos em posições diferentes, não implica numa equipe distinta.
Daí,

Obrigado pela atenção e disposição em revolver a questão. Sucesso!
-
dbarros
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Abr 29, 2014 18:56
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Gestão Recursos Humanos
- Andamento: cursando
Voltar para Análise Combinatória
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- como resolver essa questao
por Thassya » Qui Mai 21, 2009 23:25
- 1 Respostas
- 4095 Exibições
- Última mensagem por marciommuniz

Sex Mai 22, 2009 12:23
Trigonometria
-
- Como equacionar essa questão ?
por LuizCarlos » Qua Ago 17, 2011 16:23
- 2 Respostas
- 2269 Exibições
- Última mensagem por LuizCarlos

Qui Ago 18, 2011 14:16
Álgebra Elementar
-
- Como resolver essa questão?
por jmoura » Sáb Mar 31, 2012 23:58
- 3 Respostas
- 2476 Exibições
- Última mensagem por NMiguel

Dom Abr 01, 2012 19:13
Cálculo: Limites, Derivadas e Integrais
-
- Como eu resolvo essa questão
por diegoconain5 » Qua Jul 16, 2014 18:53
- 0 Respostas
- 1131 Exibições
- Última mensagem por diegoconain5

Qua Jul 16, 2014 18:53
Equações
-
- Como resolver essa questão da Ufpel?
por ativirginis » Seg Fev 27, 2012 15:02
- 1 Respostas
- 4924 Exibições
- Última mensagem por LuizAquino

Ter Fev 28, 2012 18:41
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.