• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[TRIANGULO DE PASCAL] URGENTE!

[TRIANGULO DE PASCAL] URGENTE!

Mensagempor Isa123 » Qui Jan 02, 2014 10:02

O produto do segundo e penúltimo elemento de uma linha do triângulo de Pascal é 144.
Determina o quarto elemento da linha anterior.
Isa123
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Ter Dez 10, 2013 21:38
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [TRIANGULO DE PASCAL] URGENTE!

Mensagempor Renato_RJ » Qui Jan 02, 2014 16:49

Isa123 escreveu:O produto do segundo e penúltimo elemento de uma linha do triângulo de Pascal é 144.
Determina o quarto elemento da linha anterior.


Boa tarde !!!

Sabemos que existe uma propriedade de simetria no triângulo de Pascal, isto é, dois binomiais complementares são iguais, então sabemos que:

\left \{ \begin{array}{cc} C_0^n = C_n^n \\ C_1^n = C_{n -1}^n \end{array} \right.

Logo, sabemos que o segundo elemento e o penúltimo são iguais, vamos chamá-los de x, logo temos:

x^2 = 144 \Rightarrow x = 12 (Iremos utilizar o 12 pois não faz sentido falar em linha -12).

Se C_{n - 1}^n = 12 então n  =12, como o problema pede o 4º elemento da linha anterior, basta-nos achar C_4^{11}.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59