• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Análise combinatória para um vetor de tamanho n

Análise combinatória para um vetor de tamanho n

Mensagempor lfccruz » Qua Ago 21, 2013 06:10

Olá,

Não sou estudante de matemática, mas preciso de ajuda para a seguinte situação (exemplo):

Tenho um vetor de tamanho n (estrutura de dados), preenchido com valores 1:
Exemplo: n=12
|1|1|1|1|1|1|1|1|1|1|1|1|

Posso ter sequências de zeros de tamanho m.
Exemplo: m=1
|1|0|1|0|1|0|1|0|1|1|1|1|

Exemplo: m=2
|1|0|0|1|1|0|0|1|0|0|1|1|

Exemplo: m=3
|1|0|0|0|1|1|1|0|0|0|1|1|

Quantas combinações existem para um vetor de n posições e sequências de zero de até tamanho m?
Exemplo: Para n=12 e m=3.

nenhuma sequência de zeros
|1|1|1|1|1|1|1|1|1|1|1|1|

combinações de x sequências de 1 zeros
|0|1|1|1|1|1|1|1|1|1|1|1|
|1|0|1|1|1|1|0|1|1|1|1|1|

combinações de x sequências de 2 zeros
|0|0|1|1|1|1|1|1|1|1|1|1|
|1|0|0|1|1|1|1|0|0|1|1|1|

combinações de x sequências de 3 zeros
|0|0|0|1|0|0|0|1|1|1|1|1|
|1|0|0|0|1|1|0|0|0|1|1|1|

combinações de sequências de zeros de tamanhos diferentes
|0|1|0|1|0|0|0|1|0|0|1|1|
|1|0|0|0|1|1|0|1|0|1|0|0|

Eu preciso da fórmula matemática (formal) e de uma maneira de obter uma a uma as possíveis combinações!!!

Não sei se criei o tópico no lugar correto.
Desculpem meu inglês terrível, pois falo português (Brasil).

Obrigado!
Luiz Fernando
lfccruz
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Ago 21, 2013 06:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Computação
Andamento: cursando

Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59