• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Combinatória] - matemática discreta

[Combinatória] - matemática discreta

Mensagempor Skizito » Dom Jul 27, 2014 16:38

Boa tarde, precisava de ajuda nestes 3 exercicios.

1- De quantas maneiras distintas podemos distribuir 27 livros distintos por três pessoas A,
B e C sabendo que as pessoas A e B juntas recebem o dobro do que a pessoa C recebe?


2- Pretende-se pintar 10 bolas iguais usando 4 cores: amarelo, azul, verde e vermelho. De
quantas maneiras distintas podemos fazê-lo sabendo que cada uma das cores amarela e
azul é suficiente para pintar no máximo 3 bolas e as restantes existem em quantidade
suficiente para pintar todas as bolas?


3- Quantas palavras de 9 letras se podem formar com as letras da palavra DIVISORES
sabendo que pelo menos um par de letras iguais aparece em posições consecutivas?
Skizito
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jul 27, 2014 16:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Informatica
Andamento: cursando

Re: [Combinatória] - matemática discreta

Mensagempor alexandre_de_melo » Sex Jul 31, 2015 13:49

1-Como A e B (juntos) recebem o dobro de C, então C receberá 9 e A e B receberão juntos 18 livros.

C poderá receber 9 livros de C^9 _{27} modos.

Uma vez que C já recebeu seus livros, teremos 19 modos para distribuir os livros do par AB.
Temos como opções para AB:(0,18),(1,17),(2,16) ... (18,0).

E portanto, para distribuir os livros teremos 19*C^9 _{27}




2-Vamos chamar as cores amarela e azul de cores especiais, e tratar a quantidade de cores verde e vermelha pelo par ordenado (vd,vm)

Para pintar 6 bolas com cores especiais, teremos 5 modos diferentes de pintar as outras bolas.(0,4),(1,3)...(4,0),
e logo, 5 modos.

Para pintar 5 bolas com cores especiais( 3az e 2 am, ou 2az e 3am ), teremos 6 modos diferentes de pintar as outras bolas.(0,5),(1,4)...(5,0),
e logo 2* 6 modos. Logo, 12 modos

Para pintar 4 bolas com cores especiais( 3az e 1 am, ou 2az e 2am ou 1az e 3 am), teremos 7 modos diferentes de pintar as outras bolas.(0,6),(1,5)...(6,0),
e logo 3* 7 modos.Logo, 21 modos.

Para pintar 3 bolas com cores especiais( 3az ou 2az e 1 am ou 1 az e 2 am ou 3am ), teremos 8 modos diferentes de pintar as outras bolas.(0,7),(1,6)...(7,0),
e logo 4* 8 modos.Logo, 32 modos.

Para pintar 2 bolas com cores especiais( 2 az ou 1z e 1 am ou 2am ), teremos 9 modos diferentes de pintar as outras bolas.(0,8),(1,7)...(8,0),
e logo 3* 9 modos.Logo, 27 modos.

Para pintar 1 bola com cor especial ( 1 am ou 1 az ), teremos 10 modos diferentes de pintar as outras bolas.(0,9),(1,8)...(9,0),
e logo 2* 10 modos.Logo, 10 modos.

Sem usar cor especial, teremos 11 modos diferentes de pintar as outras bolas.(0,10),(1,9)...(10,0),
e logo 11 modos.

Teremos ao todo:
5+12+21+32+27+10+11= 118 modos diferentes!!!!




3-Considere I(j) o conjunto dos anagramas onde o i aparece junto, e S(j) o conjunto dos anagramas onde o s aparece junto.
Temos então:
#I(j)=8!/2, pois considerando o par de i´s como uma letra teremos \frac{P_8}{2}

#S(j)=8!/2, pois considerando o par de s´s como uma letra teremos \frac{P_8}{2}

\#[I(j)\bigcap S(j)]=\frac{7!}{2*2},pois considerando o par de i´s como uma letra e o par de s´s como uma letra teremos \frac{P_7}{2*2}
Observe que acima as letras iguais podem ser trocadas de posição, e por isso, para cada letra igual, dividimos a quantidade de anagramas por 2.



\#[I(j)\bigcup S(j)]= #I(j)+#S(j)-\#[I(j)\bigcap S(j)]
\#[I(j)\bigcup S(j)]= \frac{8!}{2}+\frac{8!}{2}-\frac{7!}{2*2}

=39.060

Ufaaaaaaaaaaaaaaaaaa!!!!!

Grande abraço!!! Fuiiiiii!!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59