• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjunto com 3 elementos com o X no centro

Conjunto com 3 elementos com o X no centro

Mensagempor DIEGO BR » Qui Jan 21, 2016 05:21

Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?
DIEGO BR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jan 21, 2016 04:56
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Conjunto com 3 elementos com o X no centro

Mensagempor Marcos Gomes » Sáb Jun 04, 2016 17:55

DIEGO BR escreveu:Considere 49 leitores e os livros A, B e C. Sabe-se que, dos leitores que leram apenas dois livros, exatamente 7 leram A e B, exatamente 9 leram A e C, e exatamente 12 leram B e C. Se exatamente 25 leitores leram o livro A, 27 leitores leram o livro B e 33 leitores leram o livro C, então é verdade que o número de leitores que leram todos os três livros é?


Utilize a fórmula n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
Para entender como se chega a essa fórmula, acesse o link: http://www.cinoto.com.br/website/index.php/conj?id=3207

Chamaremos de “X” o valor que estamos procurando. Assim, “X” leram os livros A, B e C:
n(A U B U C) = 49 (representa o total de leitores)
n(A) = 25 (representa o número de leitores do livro A)
n(B) = 27 (representa o número de leitores do livro B)
n(C) = 33 (representa o número de leitores do livro C)
n(A ∩ B) = 7 + X (representa o número de leitores que leram o livro A e o livro B)
n(A ∩ C) = 9 + X (representa o número de leitores que leram o livro A e o livro C)
n(B ∩ C) = 12 + X (representa o número de leitores que leram o livro B e o livro C)
n(A ∩ B ∩ C) = X (representa o número de leitores que leram os três livros)

Agora é só resolver as expressões

Observação: Muito cuidado com a montagem da expressão e com as regras de sinais:
n(A U B U C) = n(A) + n(B) + n(C) - n(A ∩ B) - n(A ∩ C) - n(B ∩ C) + n(A ∩ B ∩ C)
49 = 25 + 27 + 33 – (7 + X) – (9 + X) – (12 + X) + X
49 = 85 – 7 – X – 9 – X – 12 – X + X
49 = 85 – 7 – 9 – 12 – X – X – X + X
49 = 85 – 28 – 3X + X
49 = 57 – 2X
2X = 57 – 49
2X = 8
2X = 8 ÷ 2
X = 4
Marcos Gomes
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jun 04, 2016 17:19
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59