• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvidas - Conjuntos

Dúvidas - Conjuntos

Mensagempor joaopedrel » Sáb Mar 13, 2010 23:06

Acabei de me registrar aqui no fórum, e gostei muito.
Bom, sou ruim em matemática, e tenho algumas dúvidas.
O professor passou essa questão, e eu estou com problemas para resolve-la:
" O conjutno A tem 140 elementos, B tem 160, A\capB tem x elementos e AUB tem 300 elementos. Qual o valor de x?"
Eu usei essa fórmula para resolver: N(AUBUC) = N(A) + N(B) - N (A\cap)
x= 140+160-300
x = 300-300
x = 0
Dúvidas:
1ª) A resolução está certa?
2ª) Como eu aprendi essa matéria a poucos dias, eu sei como resolver esse diagrama, vcs podem me ajudar? :
Imagem

obrigado desde já!
Avatar do usuário
joaopedrel
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 13, 2010 22:52
Localização: Florianópolis
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Dúvidas - Conjuntos

Mensagempor Elcioschin » Dom Mar 14, 2010 14:13

joaopedrel

Faça o seguinte, para não precisar decorar fórmulas:

Na parte comum entre os dois círculos escreva x
Na parte esquerda do círculo A escreva a e na parte direita do círculo B esccreva b. (a é o número de elementos que pertencem SOMENTE ao conjunto A e b é o número de elementos que pertencem SOMENTE ao conjunto B)
Na frente da letra A escreva A = 140 e na frente da letra B escreva B = 160.

Quando ele afirma que A U B = 300 significa que o total de elementos dos dois conjuntos é 300, isto é:

a + x + b = 300 ----> Equação I

Do enunciado temos:

A = 140 ----> a + x = 140 ----> Equação II
B = 160 ----> b + x = 160 ----> Equação III

II + III -----> a + b + 2x = 300 -----> Equação IV

IV - I ----> x = 0
Sua fórmula contém dois erros:

1) Não existe UC no primeiro membro
2) Ficou faltando B no final do segundo membro depois do sinal de interseção
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Dúvidas - Conjuntos

Mensagempor joaopedrel » Dom Mar 14, 2010 19:54

Me ajudou muito!
Muito obrigado ;)
Avatar do usuário
joaopedrel
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sáb Mar 13, 2010 22:52
Localização: Florianópolis
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D