• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como pode ser?

Como pode ser?

Mensagempor Guga1981 » Qua Fev 11, 2015 19:32

Amigos, não entendi o enunciado deste exercício.
Como um número x somado a um número y pode ser igual ao número y vezes o número x (afirmativa II)? Isso só da certo para x e y = 2 ou x e y = 1 e não para quaisquer x e y, como o exercício afirma.

Segue o exercício:

(U.E.CE 1980) Seja F : \Re \rightarrow \Re uma função satisfazendo as seguintes propriedades:

I - f(0) = 1
II - f(x + y) = f(x) . f(y) \forall x, y \in \Re
III - 0 < f(1) < 1

Então o valor da expressão f(0) + f(1) + f(2) + ... + f(9) é igual a:

a) \frac{{f(1)}^{10} - f(1)} {f(1) - 1}

b){f(1)}^{10} - 1

c){f(1)}^{10} - f(1)

d)\frac{{f(1)}^{10} - 1} {f(1) - 1}
Guga1981
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Dom Jan 18, 2015 13:27
Localização: São Vicente-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: Como pode ser?

Mensagempor Baltuilhe » Qua Fev 11, 2015 20:07

Boa tarde!

f(0)=1

f(1)=f(0+1)=f(0)\times f(1)=1\times f(1)=f(1)

f(2)=f(1+1)=f(1)\times f(1)=f(1)^2

f(3)=f(1+2)=f(1)\times f(2)=f(1)\times f(1)^2=f(1)^3

Então:
f(4)=f(1)^4

f(5)=f(1)^5

E assim sucessivamente.
Portanto, é uma P.G. com termo inicial 1 e razão f(1)

Fórmula da soma de P.G.
S_n=a_1\frac{q^n-1}{q-1}
Onde q é a razão da P.G.

Substituindo o que se deve, então:
S_{10}=1\frac{f(1)^{10}-1}{f(1)-1}
S_{10}=\frac{f(1)^{10}-1}{f(1)-1}

Como 0<f(1)<1 não há perigo em dar zero no denominador.

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 60
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}