• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Conjuntos] Diferença simétrica

[Conjuntos] Diferença simétrica

Mensagempor Incognite » Sáb Mar 10, 2018 18:22

Prezados,

Sou novo no fórum, gostaria que alguém pudesse me responder o que segue:

Em se tratatando de Conjuntos, provar das três formas abaixo listadas que a Operação "Diferença Simétrica" é associativa:

AΔ(BΔC)=(AΔB)ΔC
Incognite
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Mar 10, 2018 18:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ciências biológicas
Andamento: cursando

Re: [Conjuntos] Diferença simétrica

Mensagempor adauto martins » Qui Abr 26, 2018 20:15

1)
A\nabla (B\nabla C)\subset (A\nabla B)\nabla C
seja x \in A\nabla (B\nabla C)\Rightarrow x\in A\bigcup_{}^{}(B\bigcup_{}^{}C)e // x (nao\in)(A\bigcap_{}^{}(B\bigcap_{}^{}C)
\Rightarrow x\in (A\bigcup_{}^{}B)\bigcup_{}^{}C//e//x(nao\in)(A\bigcap_{}^{}B)\bigcap_{}^{}C\Rightarrow (A\nabla B)\nabla C
2)
análogo a 1)fica como exercício,mostrar que:
(A\nabla B)\nabla C \subset A\nabla(B\nabla )...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 704
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}