• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Funções isomorfica,Monomorficas e epimorficas]

[Funções isomorfica,Monomorficas e epimorficas]

Mensagempor AlexandreSR » Qui Nov 24, 2016 13:32

Preciso fazer um trabalho na faculdade sobre funções parciais e totais, sendo que preciso de um exemplo prático de uso de funções monomorficos, isomorficas e epimorficas.
Não encontrei nada sobre exemplos praticos de utilização.
AlexandreSR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 24, 2016 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: [Funções isomorfica,Monomorficas e epimorficas]

Mensagempor adauto martins » Sex Nov 25, 2016 11:36

funçao isomorficas:
f:A\rightarrow B,existe uma bijeçao(funçao é injetora e sobrejetora)de AemB e é talque
f,separa a soma ou produto das funçoes,ou seja...
dados a,b \in A\Rightarrow f(a+b)=f(a)+f(b) ou f(a.b)=f(a).f(b),onde +,.sao operaçoes definidas em funçao da estrutura algebrica dos conjuntos A,B...exemplo as funçoes exponenciais e logaritmicas...{e}^{(a+b)}={e}^{a}.{e}^{b}...ln(a+b)=ln(a).ln(b)...
monomorfismo
f:A\rightarrow B,é tal que f e´injetiva e satisfaz as seguintes propriedades:
seja g:B\rightarrow C...h:C\rightarrow A,entao:
é associativo,ou seja (f(o)g)(o) h=f (o) (g(o)h) e existe o elemento identidade,ou seja I:A\rightarrow A,tem-se f(o)I=f,onde (o) é a operaçao de composiçao de funçoes...
epimorfismo
as mesma propriedades da monomorfismo com f sobrejetiva...
um exemplo é a funçao f(x)=x,é mono e epi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 676
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?