• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Funções isomorfica,Monomorficas e epimorficas]

[Funções isomorfica,Monomorficas e epimorficas]

Mensagempor AlexandreSR » Qui Nov 24, 2016 13:32

Preciso fazer um trabalho na faculdade sobre funções parciais e totais, sendo que preciso de um exemplo prático de uso de funções monomorficos, isomorficas e epimorficas.
Não encontrei nada sobre exemplos praticos de utilização.
AlexandreSR
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 24, 2016 13:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Informatica
Andamento: cursando

Re: [Funções isomorfica,Monomorficas e epimorficas]

Mensagempor adauto martins » Sex Nov 25, 2016 11:36

funçao isomorficas:
f:A\rightarrow B,existe uma bijeçao(funçao é injetora e sobrejetora)de AemB e é talque
f,separa a soma ou produto das funçoes,ou seja...
dados a,b \in A\Rightarrow f(a+b)=f(a)+f(b) ou f(a.b)=f(a).f(b),onde +,.sao operaçoes definidas em funçao da estrutura algebrica dos conjuntos A,B...exemplo as funçoes exponenciais e logaritmicas...{e}^{(a+b)}={e}^{a}.{e}^{b}...ln(a+b)=ln(a).ln(b)...
monomorfismo
f:A\rightarrow B,é tal que f e´injetiva e satisfaz as seguintes propriedades:
seja g:B\rightarrow C...h:C\rightarrow A,entao:
é associativo,ou seja (f(o)g)(o) h=f (o) (g(o)h) e existe o elemento identidade,ou seja I:A\rightarrow A,tem-se f(o)I=f,onde (o) é a operaçao de composiçao de funçoes...
epimorfismo
as mesma propriedades da monomorfismo com f sobrejetiva...
um exemplo é a funçao f(x)=x,é mono e epi...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}