por Debora Bruna » Seg Jan 11, 2016 18:48
Quando li esse exercício,((UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?) comecei da seguinte forma:
Acrescentando-se dois novos elementos a um conjunto A
Conjunto A = n, acrescentando-se 2, vai n+2.
o número de subconjuntos de A teve um acréscimo de 384
n=2^n. e n+2= 2^n+2
começando a resolver:
n+2= 2^n+2 + 384.
Parei aqui.
A resolução que encontrei na internet é essa:
2n+2 = 2n+384
2n. 2^2 = 2n + 384
4. 2n= 2n+384
2n= 384/3
2n=128
2n= 2^7
n=7
E depois de torrar todos os neurônios, a entendi. Só que porque não começa com: ? Já que, se o número de elementos de um conjunto n = 2^n, então o número de elementos de um conjunto n+2 = 2^n+2, então deveria prosseguir da seguinte forma n+2= 2^n+2 + 384, não é?
-
Debora Bruna
- Novo Usuário
-
- Mensagens: 8
- Registrado em: Seg Dez 15, 2014 17:49
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por DanielFerreira » Dom Fev 07, 2016 15:05
Debora Bruna escreveu:(UFSM-RS) Acrescentando-se dois novos elementos a um conjunto A, verificou-se que o número de subconjuntos de A teve um acréscimo de 384. Quantos elementos possuía originalmente o conjunto A?
Vamos supor que o conjunto A tenha
elementos, então a quantidade de subconjuntos do conjunto A é dado por
.
Ora, se acrescentamos dois elementos ao conjunto A, podemos concluir que o número de subconjuntos do "novo" conjunto será dado por
.
Do enunciado,
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação
-
- Mensagens: 1728
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Engº Pedreira - Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Duvida em exercicio de Conjuntos
por krobc » Sáb Mar 17, 2012 12:07
- 0 Respostas
- 1079 Exibições
- Última mensagem por krobc
Sáb Mar 17, 2012 12:07
Conjuntos
-
- [Conjuntos] Dúvida em exercício.
por Debora Bruna » Seg Jan 11, 2016 18:49
- 1 Respostas
- 2011 Exibições
- Última mensagem por DanielFerreira
Dom Fev 07, 2016 20:49
Conjuntos
-
- [Conjuntos] Exercício de conjuntos com áreas
por redleader » Ter Abr 02, 2013 16:12
- 0 Respostas
- 1454 Exibições
- Última mensagem por redleader
Ter Abr 02, 2013 16:12
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 5912 Exibições
- Última mensagem por adauto martins
Seg Set 22, 2014 15:44
Conjuntos
-
- Exercício de Conjuntos
por Loretto » Seg Out 11, 2010 18:26
- 0 Respostas
- 1230 Exibições
- Última mensagem por Loretto
Seg Out 11, 2010 18:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.