por sanches03 » Ter Out 13, 2015 00:27
Sabendo-se que a proposição "Antônio é médico, ou João não é engenheiro, ou Maria não é advogada" é falsa, então é
verdade que,
A)se Antônio não é médico, então João não é engenheiro, e se João é engenheiro, então Maria é advogada.
B)se Antônio é médico, então João é engenheiro, e se Maria é advogada, então Antônio é médico.
C)se Antônio não é médico, então Maria é advogada, e se Maria não é advogada, então João é engenheiro.
D)se Maria é advogada, então João é engenheiro e Antônio é médico.
E)se João é engenheiro, então Maria não é advogada e Antônio não é médico.
-
sanches03
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Out 12, 2015 23:21
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino medio
- Andamento: formado
por DanielFerreira » Sáb Out 31, 2015 20:58
Olá, boa noite!
Pensei no seguinte: sabendo que numa proposição envolvendo "ou", a sentença será verdadeira se pelo menos uma delas for verdadeira; fica fácil notar que cada uma delas é FALSA.
Portanto,
Antônio não é médico;
João é engenheiro;
Maria é advogada.
Para concluir o exercício, devemos saber que a condicional entre duas proposições é uma nova proposição que é FALSA sempre que a primeira for verdadeira e a segunda for falsa (tomemos como exemplo a frase: se Antônio não é médico, então João não é engenheiro); nos outros casos será VERDADEIRA.
a) VF e VV ====> falsa
b) FV e VF ====> falsa
c) VV e FV ====> VERDADEIRA
d) VF ========> falsa
e) VF ========> falsa
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- raciocinio lógico
por TEKA » Qui Mar 25, 2010 20:30
- 3 Respostas
- 8818 Exibições
- Última mensagem por TEKA

Sex Mar 26, 2010 10:44
Álgebra Elementar
-
- Raciocínio lógico
por Abelardo » Seg Mar 07, 2011 05:03
- 1 Respostas
- 7666 Exibições
- Última mensagem por Renato_RJ

Seg Mar 07, 2011 06:20
Álgebra Elementar
-
- Raciocínio lógico!
por GABRUEL » Sáb Jul 16, 2011 00:09
- 2 Respostas
- 2881 Exibições
- Última mensagem por GABRUEL

Sáb Jul 16, 2011 00:43
Álgebra Elementar
-
- Raciocínio Lógico
por glau » Ter Nov 08, 2011 13:26
- 2 Respostas
- 2782 Exibições
- Última mensagem por MarceloFantini

Ter Nov 08, 2011 16:57
Cálculo: Limites, Derivadas e Integrais
-
- Raciocínio Lógico
por Marcling » Qua Mar 28, 2012 10:16
- 1 Respostas
- 2438 Exibições
- Última mensagem por profmatematica

Qui Mar 29, 2012 16:03
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.