por sanches03 » Ter Out 13, 2015 00:27
Sabendo-se que a proposição "Antônio é médico, ou João não é engenheiro, ou Maria não é advogada" é falsa, então é
verdade que,
A)se Antônio não é médico, então João não é engenheiro, e se João é engenheiro, então Maria é advogada.
B)se Antônio é médico, então João é engenheiro, e se Maria é advogada, então Antônio é médico.
C)se Antônio não é médico, então Maria é advogada, e se Maria não é advogada, então João é engenheiro.
D)se Maria é advogada, então João é engenheiro e Antônio é médico.
E)se João é engenheiro, então Maria não é advogada e Antônio não é médico.
-
sanches03
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Seg Out 12, 2015 23:21
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino medio
- Andamento: formado
por DanielFerreira » Sáb Out 31, 2015 20:58
Olá, boa noite!
Pensei no seguinte: sabendo que numa proposição envolvendo "ou", a sentença será verdadeira se pelo menos uma delas for verdadeira; fica fácil notar que cada uma delas é FALSA.
Portanto,
Antônio não é médico;
João é engenheiro;
Maria é advogada.
Para concluir o exercício, devemos saber que a condicional entre duas proposições é uma nova proposição que é FALSA sempre que a primeira for verdadeira e a segunda for falsa (tomemos como exemplo a frase: se Antônio não é médico, então João não é engenheiro); nos outros casos será VERDADEIRA.
a) VF e VV ====> falsa
b) FV e VF ====> falsa
c) VV e FV ====> VERDADEIRA
d) VF ========> falsa
e) VF ========> falsa
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- raciocinio lógico
por TEKA » Qui Mar 25, 2010 20:30
- 3 Respostas
- 8769 Exibições
- Última mensagem por TEKA

Sex Mar 26, 2010 10:44
Álgebra Elementar
-
- Raciocínio lógico
por Abelardo » Seg Mar 07, 2011 05:03
- 1 Respostas
- 7605 Exibições
- Última mensagem por Renato_RJ

Seg Mar 07, 2011 06:20
Álgebra Elementar
-
- Raciocínio lógico!
por GABRUEL » Sáb Jul 16, 2011 00:09
- 2 Respostas
- 2813 Exibições
- Última mensagem por GABRUEL

Sáb Jul 16, 2011 00:43
Álgebra Elementar
-
- Raciocínio Lógico
por glau » Ter Nov 08, 2011 13:26
- 2 Respostas
- 2735 Exibições
- Última mensagem por MarceloFantini

Ter Nov 08, 2011 16:57
Cálculo: Limites, Derivadas e Integrais
-
- Raciocínio Lógico
por Marcling » Qua Mar 28, 2012 10:16
- 1 Respostas
- 2409 Exibições
- Última mensagem por profmatematica

Qui Mar 29, 2012 16:03
Desafios Médios
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.