por brumadense » Qua Fev 24, 2010 01:22
Olá, tudo bem? Gostaria de uma ajuda para resolver essas questões envolvendo conjuntos. Algumas conseguir resolver, mas outras não tive a menor idéia, gostaria de uma ajuda pra responder essas questões e também de uma confirmação das que respondi estão corretas. Obrigado.
1) Seja A um conjunto de 11 elementos. O conjunto Y de todos os subconjuntos de A tem n elementos. Pode-se concluir que:
R: Estudando aqui no livro, vi essa fórmula: Se um conjunto tem n elementos então

possui

elementos
Então como A possui 11 elementos, fiz:

= n = 2.048
2) Sendo A = {0, 1} e B = {2, 3}, o número de elementos [P(A) ? P(B)] é:
Nessa questão

é achar o conjunto cujos elementos são todos os subconjuntos de A.

= {{

}, {0}, {1}, {0,1}}

= {{

}, {2}, {3}, {2,3}}
Como pede [P(A) ? P(B)] = 1, cuja intersecção seria o {

}
Agora gostaria de uma ajuda pra responder essas questões abaixo, pois não tenho idéia nem de como começar.
3) O número de conjuntos X que satisfazem: {1, 2}

X

{1, 2, 3, 4} é:
4) O número de elementos do conjunto A é

e o número de elementos do conjunto B é

. O número de elementos de (A × B) é:
5) Depois de N dias de férias, um estudante observa que:
I - Choveu 7 vezes, de manhã ou à tarde.
II - Quando chove de manhã, não chove à tarde.
III - Houve 5 tardes sem chuva.
IV - Houve 6 manhãs sem chuva.
O número N de dias de férias foi:
-
brumadense
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jan 15, 2010 00:06
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por DanielFerreira » Seg Mar 15, 2010 04:36
1) Seja A um conjunto de 11 elementos. O conjunto Y de todos os subconjuntos de A tem n elementos. Pode-se concluir que:
R: Estudando aqui no livro, vi essa fórmula: Se um conjunto tem n elementos então possui elementos
Então como A possui 11 elementos, fiz: = n = 2.048

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Seg Mar 15, 2010 04:38
2ª questão:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Seg Mar 15, 2010 04:41
4ª questão:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por brumadense » Sex Mar 19, 2010 02:30
Olá danjr5
obrigado pela ajuda nas confirmações e questão respondidas.
-
brumadense
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jan 15, 2010 00:06
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Molina » Sex Mar 19, 2010 10:28
brumadense escreveu:3) O número de conjuntos X que satisfazem: {1, 2}

X

{1, 2, 3, 4} é:
O que esta sentença está nos dizendo é que {1,2} (2 elementos) está contido num conjunto X, com n elementos, que está contido em {1,2,3,4} (4 elementos).
Então, obrigatoriamente o número de elementos de X tem que estar entre 2 e 4:
{1, 2}

{1,2}

{1, 2, 3, 4}
{1, 2}

{1,2,3}

{1, 2, 3, 4}
{1, 2}

{1,2,3,4}

{1, 2, 3, 4}
Por isso, há 3 opções para o conjunto X.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por MarceloFantini » Seg Mai 10, 2010 16:24
Danjr, não entendi a resposta da 4ª questão. Pode me esclarecer?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por DanielFerreira » Ter Jun 08, 2010 18:18
Fantini,
suponhamos que os conjuntos sejam distintos:
A = {b, c}
B = {d, e, f}
A ===> 2^m ====> 2² = 4 subconjuntos
B ===> 2^k =====> 2³ = 8 subconjuntos
logo,
n(A * B) = 2^m + 2^k - 1
n(A * B) = 4 + 8 - 1
n(A * B) = 11
O que fiz, foi não considerar um dos {} - vazio!!!
Vale ressaltar que é válido quando os conjuntos são distintos, ou seja, a intersecção é {}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8679 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 6109 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- [conjuntos]numeros racionais e conjuntos
por fenixxx » Ter Fev 28, 2012 21:35
- 3 Respostas
- 4533 Exibições
- Última mensagem por DanielFerreira

Sex Mar 02, 2012 00:04
Álgebra Elementar
-
- [Conjuntos] Problema de conjuntos com porcentagem
por Tibes » Qui Jan 31, 2013 14:29
- 1 Respostas
- 7800 Exibições
- Última mensagem por young_jedi

Sex Fev 01, 2013 12:39
Conjuntos
-
- [Conjuntos] Conjuntos e geometria plana
por bencz » Dom Mar 03, 2013 12:58
- 3 Respostas
- 11001 Exibições
- Última mensagem por maison_souza

Sex Nov 14, 2014 13:15
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.