• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar conjuntos

Determinar conjuntos

Mensagempor Klash1 » Qua Abr 09, 2014 18:00

Dado U = {-4,-3,-2,-1,0,1,2,3,4}, sejam A = {x\epsilonU|x<0}, B = {x\epsilonU|-3<x<2} e C = {X\epsilonU|x\geq-1} Determine:

A) A \cap B \cap C
B) A \cup B \cup C
C) C \cup (B\cap A)
D)(B \cup A) \cap C


Eu não sei resolver esse exercício. Podem resolver apenas o primeiro e explicar a resolução? Só preciso que seja explicado uma e as outras conseguirei resolver (espero :-D)


Obrigado!


---

Está correto isso que fiz?

A: {-1}
B: {-4,-3,-2,-1,0,1,2,3,4}
C: {-2,-1,0,1,2,3,4}
D: {-1,0,1}
Klash1
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 09, 2014 17:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Informática
Andamento: cursando

Re: Determinar conjuntos

Mensagempor Russman » Qua Abr 09, 2014 23:43

A sua estratégia está correta. Você tem que expressar os conjuntos A, B e C com os seus respectivos elementos explicitamente para visualizar melhor as intersecções e uniões.

Os elementos do conjunto A são todos aqueles do conjunto U que menores que 0. Ou seja, todos os elementos negativos de U. Assim, verificando, temos A = \left \{ -4,-3,-2,-1 \right \}.
Os elementos do conjunto B são todos aqueles do conjunto U que são menores que 2 e maiores que 3 . Assim, verificando, temos B = \left \{  -2,-1,0,1\right \}. Note aqui que a notação -3<x e x<2 significa que temos de selecionar todos os elementos de U que se incluem nesse intervalo mas EXCLUINDO o próprio -3 e 2. Do contrário seria -3 \leq x e x \geq 2. Entende porque? Veja a definição de intervalo aberto e fechado.
Os elementos do conjunto C, finalmente, são todos aqueles do conjunto U que são maiores OU IGUAL a -1 . Assim, verificando, temos C = \left \{-1,0,1,2,3,4 \right \}. Aqui, inclui-se o próprio -1.

A operação "intersecção" entre dois conjuntos gera um novo conjunto cujos elementos são a captura de todos os elementos comuns a eles. Por exemplo,

A\cap B = \left \{-2,-1\right\}

pois são os únicos elementos que pertencem a A e B simultaneamente .

Já a operação "união" entre dois conjuntos gera um novo conjunto cujos elementos são a junção(ou união, como o nome mesmo já diz) de todos os elementos desses conjuntos. Nota: se um elemento pertence ao dois conjuntos simultaneamente, isto é, se este elemento pertence a intersecção dos conjuntos, ele deve ser acrescentado a união dos mesmos uma única vez. Por exemplo,

A \cup B = \left\{-4,-3,-2,-1,0,1 \right\}

Os elementos -2 e -1 pertencem a intersecção de A e B (como calculamos no 1° exemplo) e apareceram uma única vez no conjunto união.

Tente prosseguir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}