• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Conjuntos

Conjuntos

Mensagempor Felipe santos santos » Ter Set 04, 2012 08:26

Eu to com algumas duvidas que estão me impedindo continuar com a matéria , se alguém puder ajudar eu agradeço!! :

1 -como eu posso provar : Na U b = Na+Nb - Na inter b .
Eu já olhei a resolução deste exercício , porém ainda não consegui entender bem o que ele faz .Eu sei que essa fórmula é usada em muitos exercícios , porém como eu não não entendi eu não consigo aplica-la .

2-O que seria um conjunto complementar em U . Eu sei que complementar de ex : B em A seria A-b . mais e quando o conjunto é complementar do universo ? significa que eu devo exclui-lo .

3 - Aquele traço em cima do conjunto significa que ele é complementar de algo ... como saber de quem ele é complementar ex :
digamos que ` seja o traço em cima dos conjuntos então , `A-B ,`A-`b , de quem eles são complementares como distinguir , e quando o traço está em cima dos dois conjuntos .Mesma coisa aquele C na frente dos conjuntos , não o de sub-conjunto , mais aquele que fica dentro dos parenteses , o que ele significa quando esta com um único conjunto .

Bom é isso agradeço desde já .
Felipe santos santos
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Set 04, 2012 08:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: Pré-vest
Andamento: cursando

Re: Conjuntos

Mensagempor Joseaugusto » Ter Set 04, 2012 21:01

1a duvida:
Acontece o seguinte, quando se faz AUB, teoricamente seria só somar os elementos de A e B. Porém, isso só é valido quando são conjuntos disjuntos (sem elementos comuns). Quando a interseccão não é vazia, na soma os elementos comuns, ou seja, AinterB, seriam contados duas vezes. Por isso se subtrai AinterB
Não sei se ficou claro, então fiz um exemplo rapido:
Imagem
Na primeira imagem, temos os conjuntos A e B. Para fazer A+B, os elementos 3 e 7 apareceriam duas vezes (imagem 2). Mas na união de conjuntos, os elementos comuns são contados apenas uma vez, por isso subtraimos a intersecção (imagem 3), resultando em AUB (imagem 4)

2a duvida.
Pense no complementar assim:
Complementar de A em relação a B é tudo o que falta em A para que a se torne B, ou seja, B-A. Isso vale para quaisquer conjunto. Então, o complementar de A em relação a U, seria U-A
Imagem
A parte rosa é Acomplementar( {A}^{c})

3a duvida
Eu não entendi direito o que perguntou, vamos por partes.
Chamaremos Ac ou Bc os complementares de A e B respectivamente.
Quando não especifica (dizendo por exemplo AcB (a complementar em relação a B), voce considera complementar em relação ao U.
Nos casos que voce citou:
quando temos por exemplo, Ac - B
Imagem
Isso seria: Tudo o que falta para que A se torne o universo, menos o conjunto B
Ac - Bc
Imagem
Como A \subset B, temos que Ac seria todo o universo menos A, e Bc seria a parte verde (U-B). Dessa forma Ac-Bc seria a parte em rosa.


Espero ter ajudado.
Joseaugusto
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Mar 06, 2012 11:16
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Conjuntos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D