por LausDeo » Sáb Mar 26, 2011 13:59
Estamos estudando em dupla para os vestibulares no fim de ano, nos deparamos com um problema que diz o seguinte: "Considere-se o conjunto M de todos os números inteiros formados por exatamente três algarismos iguais. Pode-se afirmar que todo n ? M é múltiplo de: a) 5; b) 7; c) 13; d) 17 ou e) 37.
Fazendo as contas com base nas opções de respostas, encontramos a solução "e)37". Porém a dúvida é quais números representam o "n", eu entendo que são tão somente: 111; 222; 333; 444; 555; 666; 777; 888 e 999. Mas o outro estudante acredita que seja todos os números múltiplos de 37. Quais números estão representando o "n"?
-
LausDeo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Mar 26, 2011 13:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico RH
- Andamento: cursando
por FilipeCaceres » Sáb Mar 26, 2011 14:49
Vamos interpretar o enunciado:
Considere-se o conjunto M de todos os números INTEIROS formados por exatamente três algarismos iguais.
Logo,

Se n ? M, então, n é um número que pertence ao conjunto M, e não todos os multiplos de 37, pois 148 é multiplo e não está no conjunto.
Sabendo como o conjunto é formado acredito que seja suficiente para achar a resposta.
Qualquer dúvido é só perguntar.
Abraço
Editado pela última vez por
FilipeCaceres em Sáb Mar 26, 2011 15:09, em um total de 2 vezes.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por LuizAquino » Sáb Mar 26, 2011 15:06
"Considere-se o conjunto M de todos os números inteiros formados por exatamente três algarismos iguais"
Isso quer dizer que qualquer elemento x pertencente a M tem o formato: x = 100a+10a+a, onde a é inteiro e -10 < a <10.
Desse modo, temos que x=111a. Como 111 é um múltiplo de 37, então x também é múltiplo desse número.
Portanto, podemos afirmar que qualquer elemento do conjunto M é um múltiplo de 37.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LausDeo » Sáb Mar 26, 2011 15:37
Vendo as duas respostas, entendi que há divergências, pois a primeira limita os conjunto M, somente em "-999, 888, 777, ... ..., 888 e 999. A segunda resposta dia que todo múltiplo de 37 pertence ao M.
O que é verdade...?
-
LausDeo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Mar 26, 2011 13:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Técnico RH
- Andamento: cursando
por LuizAquino » Sáb Mar 26, 2011 15:48
LausDeo escreveu: A segunda resposta diz que todo múltiplo de 37 pertence ao M.
Dizer que "todo múltiplo de 37 pertence a M" não é a mesma coisa de dizer que "qualquer elemento do conjunto M é um múltiplo de 37" (que foi o que eu disse). Tenha mais cuidado com a leitura.
Vamos a pergunta do exercício:
Pode-se afirmar que todo n ? M é múltiplo de:
a) 5
b) 7
c) 13
d) 17
e) 37
Perceba que
não há a afirmação no exercício de que M deve ser
igual ao conjunto dos múltiplos dos números das alternativas. O exercício quer apenas saber se qualquer elemento de M pode ser um múltiplo dos números nas alternativas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Conjuntos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Conjuntos] Confusão em teoria dos conjuntos numa questão.
por Debora Bruna » Seg Jan 11, 2016 17:44
- 1 Respostas
- 8842 Exibições
- Última mensagem por DanielFerreira

Sáb Jan 23, 2016 16:44
Conjuntos
-
- [Conjuntos] Dúvida sobre conjuntos vazios
por ALPC » Qui Set 18, 2014 18:28
- 5 Respostas
- 6422 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 15:44
Conjuntos
-
- [conjuntos]numeros racionais e conjuntos
por fenixxx » Ter Fev 28, 2012 21:35
- 3 Respostas
- 4731 Exibições
- Última mensagem por DanielFerreira

Sex Mar 02, 2012 00:04
Álgebra Elementar
-
- [Conjuntos] Problema de conjuntos com porcentagem
por Tibes » Qui Jan 31, 2013 14:29
- 1 Respostas
- 7960 Exibições
- Última mensagem por young_jedi

Sex Fev 01, 2013 12:39
Conjuntos
-
- [Conjuntos] Conjuntos e geometria plana
por bencz » Dom Mar 03, 2013 12:58
- 3 Respostas
- 11208 Exibições
- Última mensagem por maison_souza

Sex Nov 14, 2014 13:15
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.