por Mbssilva » Dom Fev 12, 2017 15:41
Boa tarde amigos.
http://prnt.sc/e7s4riNão conseguir desenvolver ela. Porém, acredito que a condição de existência eu tenha conseguido achar: {x ? ?|-1? x <0 ou x ?1}.
Como posso terminar essa conta??
Obrigado desde já àqueles que me ajudarem.
-
Mbssilva
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 12, 2017 15:28
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 314159265 » Seg Fev 13, 2017 06:01
Eu tou tentando fazer sua questão, que realmente é complicada. Eu transformei a subtração do lado esquerdo em produto e fiz a análise do sinal das funções. Veja no anexo. Perceba que se x < 0, a inequação será sempre insatisfeita, pois negativo sempre vai ser menor do que positivo. Eu sei que minha solução está em x>=1 e sei também que pra x = 1 ela não é satisfeita, pois ambos os lados serão 0. Eu só não tou conseguindo provar que pra qualquer x > 1 a inequação é satisfeita. Pra isso eu só preciso provar que as curvas não se cruzam em x > 1.
- Anexos
-

-
314159265
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Seg Fev 13, 2017 02:11
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por adauto martins » Qua Fev 15, 2017 17:09
racionalizar os radicais:
![(\sqrt[]{x-(1/x)}-\sqrt[]{1-(1/x)}).(\sqrt[]{x-(1/x)}+ (\sqrt[]{1-(1/x))} \succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)} (\sqrt[]{x-(1/x)}-\sqrt[]{1-(1/x)}).(\sqrt[]{x-(1/x)}+ (\sqrt[]{1-(1/x))} \succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)}](/latexrender/pictures/0913c92c8fde9c9c453c7053306aaf2a.png)

![x-(1/x)-(1-(1/x))\succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)} x-(1/x)-(1-(1/x))\succ ((x-1)/x).(\sqrt[]{x-(1/x)}+\sqrt[]{1-(1/x)}](/latexrender/pictures/728a5a1447183949fed726b94f7ffb36.png)
...
![x-1\succ ((x-1)/x).(\sqrt[]{...}+\sqrt[]{...})\Rightarrow x\succ \sqrt[]{...}+\sqrt[]{...} x-1\succ ((x-1)/x).(\sqrt[]{...}+\sqrt[]{...})\Rightarrow x\succ \sqrt[]{...}+\sqrt[]{...}](/latexrender/pictures/91c7a4f450923491314fd113c9fce24e.png)
...ai é elevar ao quadrado ate tirar o radical,assim resolve-se a inequaçao...termine-o...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lógica e Conjuntos, questão cabulosa.
por legendandom » Qui Abr 15, 2010 15:50
- 1 Respostas
- 2507 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 19:58
Álgebra Elementar
-
- questão cabulosa. Ajuda aqui!!!
por zenildo » Seg Mai 09, 2016 01:49
- 4 Respostas
- 2901 Exibições
- Última mensagem por zenildo

Qui Mai 12, 2016 22:43
Trigonometria
-
- [INEQUAÇÂO] Inequação do tipo: (a+ x < b + x < c + x)
por Diofanto » Dom Fev 03, 2013 19:55
- 7 Respostas
- 5940 Exibições
- Última mensagem por Diofanto

Qui Fev 14, 2013 23:45
Inequações
-
- [inequação modular] DÚVIDA SIMPLES EM INEQUAÇÃO MODULAR
por brunocunha2008 » Sex Set 13, 2013 22:37
- 1 Respostas
- 7040 Exibições
- Última mensagem por Rafael Henrique

Qui Jan 03, 2019 14:39
Inequações
-
- Inequação
por Luna » Seg Set 28, 2009 18:55
- 4 Respostas
- 3478 Exibições
- Última mensagem por Molina

Ter Set 29, 2009 16:50
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.