por Raquel299 » Dom Mar 08, 2015 15:15
Elimine o módulo em: | x-1 | + |x+2 |
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
por Russman » Seg Mar 09, 2015 03:20
Considerando a função

Comecemos com

. Se

então

Daí, se

,

.
Agora, se

e, portanto,

, temos

.
Caso de

e, portanto,

é

.
Daí,

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Raquel299 » Sex Abr 10, 2015 10:51
Russman escreveu:Considerando a função

Comecemos com

. Se

então

Daí, se

,

.
Agora, se

e, portanto,

, temos

.
Caso de

e, portanto,

é

.
Daí,

Obrigada Russman!
-
Raquel299
- Usuário Ativo

-
- Mensagens: 14
- Registrado em: Dom Mar 08, 2015 14:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Ciências Biológicas
- Andamento: cursando
Voltar para Inequações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Módulo
por Rodrigo Tomaz » Sex Fev 19, 2010 11:36
- 4 Respostas
- 2824 Exibições
- Última mensagem por MarceloFantini

Sex Mar 05, 2010 16:09
Funções
-
- Modulo
por Sandy26 » Ter Abr 27, 2010 14:46
- 5 Respostas
- 2792 Exibições
- Última mensagem por MarceloFantini

Qui Abr 29, 2010 17:57
Álgebra Elementar
-
- Módulo
por Bebel » Dom Ago 08, 2010 00:24
- 0 Respostas
- 1298 Exibições
- Última mensagem por Bebel

Dom Ago 08, 2010 00:24
Números Complexos
-
- Modulo.
por 380625 » Qui Mar 17, 2011 11:21
- 2 Respostas
- 1983 Exibições
- Última mensagem por LuizAquino

Sex Set 09, 2011 10:47
Cálculo: Limites, Derivadas e Integrais
-
- Módulo
por torilleon » Sáb Ago 20, 2011 19:28
- 2 Respostas
- 1472 Exibições
- Última mensagem por Neperiano

Sáb Ago 20, 2011 20:40
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.