• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Inequações do 1° Grau] Dúvidas

[Inequações do 1° Grau] Dúvidas

Mensagempor lcmschilling » Seg Jun 23, 2014 22:49

Preciso de ajuda para solucionar três questões sobre inequações:

k) \chi+\frac{5-x}{6}>\frac{4x+4}{3}-\frac{x}{2}
Resolvi essa questão e conforme o gabarito a resposta é S=Ø

l)\frac{x}{2}+\frac{x-1}{3}\leq x-\frac{x}{6}
Resolvi essa questão e o resultado foi semelhante ao da questão acima, porém no gabarito consta resposta S=?
Gostaria de saber como solucionar essas duas inequações e porque no segundo caso a resposta é diferente da primeira questão mesmo tendo resultado semelhante.

c) -3\leq \frac{4x+1}{5} < 0 a resposta do gabarito é -4 < x < 0 por isso gostaria de saber por que o sinal de ? deu lugar ao sinal de < e como chegou-se a x<0

Obrigado!
Editado pela última vez por lcmschilling em Seg Jun 23, 2014 23:46, em um total de 5 vezes.
lcmschilling
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 23, 2014 21:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Inequações do 1° Grau] Dúvidas

Mensagempor e8group » Seg Jun 23, 2014 23:24

Por favor utilize o LaTeX para digitar as equações .

Não é notável o que digitou ... Seria x + \frac{5-x}{6}  >  \frac{4x-4}{\dfrac{3-x}{2}} ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Inequações do 1° Grau] Dúvidas

Mensagempor lcmschilling » Seg Jun 23, 2014 23:45

Já editei corretamente as fórmulas agora.
lcmschilling
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Jun 23, 2014 21:04
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Inequações do 1° Grau] Dúvidas

Mensagempor e8group » Ter Jun 24, 2014 01:23

Dica :

As informações sobre os números reais a  \geq  b e a - b \geq  0  (*) são equivalentes .

Suponha que S : = \{ x \in \mathbb{R} :   x+\frac{5-x}{6} >\frac{4x+4}{3}-\frac{x}{2}  \} é não vazio , pela suposição existe algum x tal que a =x+\frac{5-x}{6}  > \frac{4x+4}{3}-\frac{x}{2}  = b . Use (*) para concluir que a - b  > 0 é falso o que equivale dizer que não é verdade que a > b o que equivale dizer que não existe x em S o que equivale dizer que S é vazio .

Se você quiser usufruir da interpretação geométrica , também pode tomar os esboços das retas r_1 : y =  x+\frac{5-x}{6}  =  \frac{5}{6} x +  \frac{5}{6} e r_2 : y  = \frac{4x+4}{3}- \frac{x}{2} = \frac{5}{6}x + \frac{8}{5} . Verá que sempre a reta r_2 está acima de r_1 .

Aproveitando este background geométrico p/ próxima questão . Deixe

r_1 : y = \frac{x}{2}+\frac{x-1}{3} = \frac{5}{6}x  - \frac{2}{3} e r_2 = x - \frac{x}{6} = \frac{5}{6} x . Note que r_1 e r_2 são paralelas (ou seja r_1 e r_2 não possuem pontos em comum ) .Das duas uma , o conjunto solução é vazio ou é toda reta real . Verifique-se que r_2 está sempre acima de r_1 , portanto sempre a desigualdade é verdadeira .

Ou alternativamente ... use (*) para concluir que \frac{x}{2}+\frac{x-1}{3}  - \left(x - \frac{x}{6}  \right) \leq 0 é sempre verdadeira o que equivale dizer que \frac{x}{2}+\frac{x-1}{3} \leq x - \frac{x}{6} o que equivale dizer que S = \mathbb{R} (já que x é genérico, não levantamos hipótese sobre ele , ele é qualquer n° real ) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D